Перевод: с английского на все языки

со всех языков на английский

применяться с учётом

  • 1 be subject to

    3) Юридический термин: применяться с учётом (напр.: The provisions of this Article are subject to... -- Положения настоящей статьи применяются с учётом...), подлежать обложению (налогом), быть подотчётным, быть обусловленным, зависеть
    4) Деловая лексика: регулироваться (чем-л.)
    5) Глоссарий компании Сахалин Энерджи: регламентироваться
    7) SAP.тех. быть объектом

    Универсальный англо-русский словарь > be subject to

  • 2 quality

    1. характеристика
    2. управление качеством
    3. массовое паросодержание
    4. качество (металлургия)
    5. качество

     

    качество
    Совокупность характеристик объекта, относящихся к его способности удовлетворить установленные и предполагаемые потребности.
    Примечания
    1 При заключении контракта или в регламентированной окружающей среде, например, в области безопасности ядерных установок, потребности четко устанавливаются, тогда как в других условиях предполагаемые потребности должны быть выявлены и определены.
    2 Во многих случаях потребности могут меняться со временем; это предполагает проведение периодического анализа требований к качеству.
    3 Обычно потребности переводятся в характеристики на основе установленных критериев [смотри требования к качеству]. Потребности могут включать, например, такие аспекты как эксплуатационные характеристики, функциональная пригодность, надежность (готовность, безотказность, ремонтопригодность), безопасность, окружающая среда [смотри требования общества], экономические и эстетические требования.
    4 Для выражения превосходной степени в сравнительном или в количественном смысле при проведении технических оценок термин «качество» не используется изолированно. Чтобы выразить эти значения, должно применяться качественное прилагательное. Например, могут использоваться следующие термины:
    a) «относительное качество», когда объекты классифицируются в зависимости от их степени превосходства или в сравнительном смысле [не путать с градацией (классом, сортом)];
    b) «уровень качества» в количественном смысле (применяется при статическом приемочном контроле) и «мера качества», когда проводятся точные технические оценки.
    5 Достижение удовлетворительного качества включает все стадии петли качества как единое целое. Вклад в качество этих различных стадий иногда идентифицируется отдельно с целью их выделения, например, качество, обусловленное потребностями, качество обусловленное проектированием продукции, качество обусловленное соответствием.
    6 В некоторых справочных источниках качество обозначается как «пригодность для использования» или «соответствие цели», или «удовлетворение нужд потребителя, или «соответствие требованиям». Все это представляет собой только некоторые стороны качества, определенного выше.
    [ИСО 8402-94]

    качество
    Степень соответствия совокупности присущих характеристик требованиям.
    Примечания
    1. Термин "качество" может применяться с такими прилагательными, как плохое, хорошее или превосходное.
    2. Термин "присущий", являющийся противоположным термину "присвоенный", означает имеющийся в чем-то, особенно если это относится к постоянным характеристикам.
    [ ГОСТ Р ИСО 9000-2008]

    качество
    Совокупность характеристик объекта, относящихся к его способности удовлетворить установленные и предполагаемые потребности.
    Примечание
    Сравнительная степень удовлетворенности субъекта установленной и воплощенной градацией объекта.
    [ ГОСТ Р 52104-2003]

    качество
    Совокупность свойств и характеристик продукта, которые влияют на его способность удовлетворять заявленные потребности.
    [МУ 64-01-001-2002]

    качество
    Совокупность свойств и характеристик продукции или услуги, которые придают им способность удовлетворять обусловленные или предполагаемые потребности
    [ИСО 8402]
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    качество

    Способность продукта, услуги, или процесса предоставлять ожидаемую потребителем ценность. Например, качество компонента может считаться высоким, если его работа оправдывает ожидания и обеспечивает требуемую надежность. Качество процесса требует наличия способности отслеживать результативность и эффективность, а также улучшать их в случае необходимости. См. тж. система менеджмента качества.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    качество
    Совокупность свойств объекта, обусловливающих его способность удовлетворять определенные потребности в соответствии с его назначением. (Иногда понятию К. придается более узкое, частное значение — тогда этот термин однозначен термину «свойство». Мы не касаемся здесь также его значения как философской категории). Одной из общих характеристик К. экономической системы, наряду с удовлетворительностью, неудовлетворительностью и т.д., является оптимальность. На шкалах W и U (см. схему к статье Экономическая система) они соответствуют разным участкам (точкам). Соответственно, оптимальность как оценка есть лишь одна из возможных характеристик качества принимаемых решений, состояния системы или ее поведения. Частными характеристиками К. экономической системы, ее свойствами являются эффективность, продуктивность, устойчивость, лабильность (способность к быстрым изменениям структуры) и др. Описательная наука должна, очевидно, с равным вниманием рассматривать все виды К. состояния и поведения анализируемой экономической системы. Иное дело — практические задачи, научное обоснование наилучших решений, например — экономической политики государства: практические нужды требуют анализа экономики прежде всего с позиций оптимума, оптимальности. Наука должна подсказывать возможности именно оптимальных решений, для чего прежде всего необходимо понять, что есть оптимальное функционирование экономической системы, как оно может осуществляться. Так что повышенное внимание к понятию «оптимальность», сделавшее его центральным понятием экономико-математических исследований, объясняется, прежде всего, практическими потребностями. Последнее время в теории исследования операций и в теории фирмы получает признание понятие «сатисфакции«, т.е. удовлетворения результатом (соответственно, в данном случае речь идет не об оптимуме, а об удовлетворительном результате, который «не хуже» некоторого заданного уровня); на микроэкономическом уровне в экономических исследованиях получило применение также понятие так называемого рационального поведения (то есть рациональности, а не обязательно оптимальности решений и действий). В более широком смысле рациональность становится одной из важных характеристик качества экономической системы, пожалуй, наиболее адекватно учитывающей такие ее свойства как сложность, неопределенность и т.п. Объективно существует и должно существовать различие между лучшим или не лучшим Качеством экономической системы, а следовательно, между лучшей или не лучшей реализацией цели экономической деятельности, что может зависеть от реальных возможностей, от воздействия управляющих факторов, и конечно, от представления общества о том, какова, собственно, эта цель. См. также Критерий оптимальности. Качество жизни (quality of life, QOL) – понятие, отражающее существенно более широкий круг факторов, влияющих на благосостояние людей, чем известное понятие уровня жизни, которое в основном опирается на доходы населения. Наряду с уровнем доходов и материальной обеспеченности, при оценке качества жизни учитывается также состояние экологии (окружающей среды), физическое и нравственное здоровье людей, уровень образования, возможности для отдыха и развлечений, мобильность населения и коммуникации, а также социально-политическая обстановка в обществе. Полезное Руководство для измерения качества жизни людей содержит доклад „OECD Guidelines on Measuring Subjective Well-being”. Наряду с другими показателями он использует индикатор, именуемый «субъективное благосостояние» („subjective well-being“), включающий оценку различных аспектов жизни, эмоциональное состояние и душевное самочувствие человека (что выявляется с помощью социологических опросов). Внимание общества к качеству жизни особенно усилилось в конце периода индустриализации, и в настоящее время является одной из важных черт исторического процесса формирования постиндустриальной экономики.
    [ http://slovar-lopatnikov.ru/]

    EN

    quality
    The ability of a product, service or process to provide the intended value. For example, a hardware component can be considered to be of high quality if it performs as expected and delivers the required reliability. Process quality also requires an ability to monitor effectiveness and efficiency, and to improve them if necessary. See also quality management system.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    EN

     

    качество
    1.Совокупность характеристик товара или услуг, которые обеспечивают их способность удовлетворять определенным требованиям (концепция «годность к употреблению»).
    2. Степень пригодности товара или услуг (сравнительная концепция). Часто определяется путем сравнения со стандартом (эталоном) или подобными товарами и услугами, получаемыми из других источников.
    3. Количественная оценка характеристик товара или услуг (количественная концепция).
    [ http://www.manual-steel.ru/eng-a.html]

    Тематики

    EN

     

    массовое паросодержание

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    характеристика
    Отличительное свойство.
    Примечания
    1. Характеристика может быть присущей или присвоенной.
    2. Характеристика может быть качественной или количественной.
    3. Существуют различные классы характеристик, такие как:
    - физические (например, механические, электрические, химические или биологические характеристики);
    - органолептические (например, связанные с запахом, осязанием, вкусом, зрением, слухом);
    - этические (например, вежливость, честность, правдивость);
    - временные(например, пунктуальность, безотказность, доступность);
    - эргономические(например, физиологические характеристики или связанные с безопасностью человека);
    - функциональные(например, максимальная скорость самолета).
    [ ГОСТ Р ИСО 9000-2008]

    характеристика

    -
    [IEV number 151-15-34]

    EN

    characteristic
    relationship between two or more variable quantities describing the performance of a device under given conditions
    [IEV number 151-15-34]

    FR

    (fonction) caractéristique, f
    relation entre deux ou plusieurs variables décrivant le fonctionnement d'un dispositif dans des conditions spécifiées
    [IEV number 151-15-34]

    Тематики

    EN

    DE

    FR

    • (fonction) caractéristique, f

    3.1.1 качество (quality): Степень соответствия совокупности присущих характеристик (3.5.1) требованиям (3.1.2).

    Примечания

    1 Термин «качество» может применяться с такими прилагательными, как плохое, хорошее или превосходное.

    2 Термин «присущий» являющийся противоположным термину «присвоенный», означает имеющийся в чем-то, особенно если это относится к постоянным характеристикам.

    Источник: ГОСТ Р ИСО 9000-2008: Системы менеджмента качества. Основные положения и словарь оригинал документа

    2.32 качество (quality): Степень, в которой набор неотъемлемых характеристик соответствует требованиям (2.40).

    [ИСО 9000:2005]

    Примечание - Существует четкое различие между качеством продукта [питьевой водой (2.11) или очищенными сточными водами (2.51)] и качеством услуги (2.44). Настоящий стандарт не содержит спецификаций по качеству продукта.

    Источник: ГОСТ Р ИСО 24511-2009: Деятельность, связанная с услугами питьевого водоснабжения и удаления сточных вод. Руководящие указания для менеджмента коммунальных предприятий и оценке услуг удаления сточных вод оригинал документа

    2.32 качество (quality): Степень, в которой набор неотъемлемых характеристик соответствует требованиям (2.40).

    [ИСО 9000:2005]

    Примечание - Существует четкое различие между качеством продукта [питьевой водой (2.11) или очищенными сточными водами (2.51)] и качеством услуги (2.44). Настоящий стандарт не содержит спецификаций по качеству продукта.

    Источник: ГОСТ Р ИСО 24512-2009: Деятельность, связанная с услугами питьевого водоснабжения и удаления сточных вод. Руководящие указания для менеджмента систем питьевого водоснабжения и оценке услуг питьевого водоснабжения оригинал документа

    2.32 качество (quality): Степень, в которой набор неотъемлемых характеристик соответствует требованиям (2.40).

    [ИСО 9000:2005]

    Примечание - Существует четкое различие между качеством продукта [питьевой водой (2.11) или очищенными сточными водами (2.51)] и качеством услуги (2.44). Настоящий стандарт не содержит спецификаций по качеству продукта.

    Источник: ГОСТ Р ИСО 24510-2009: Деятельность, связанная с услугами питьевого водоснабжения и удаления сточных вод. Руководящие указания по оценке и улучшению услуги, оказываемой потребителям оригинал документа

    3.46 качество (quality): Совокупность характеристик объекта, которые придают ему способность удовлетворить установленные и реализуемые требования.

    [ИСО 8402, пункт 2.1]

    Источник: ГОСТ Р МЭК 61513-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Общие требования оригинал документа

    3.1.1 качество (quality): Степень соответствия совокупности присущих характеристик (3.5. требованиям (3.1.2).

    Примечания

    1 Термин «качество» может применяться с такими прилагательными, как плохое, хорошее или превосходное.

    2 Термин «присущий», являющийся противоположным термину «присвоенный», означает имеющийся в чем-то, особенно если это относится к постоянным характеристикам.

    Источник: ГОСТ ISO 9000-2011: Системы менеджмента качества. Основные положения и словарь

    3.1.21 качество (quality): Степень соответствия присущих характеристик требованиям.

    Примечания

    1 Термин «качество» может применяться с такими прилагательными, как плохое, хорошее или отличное.

    2 Термин «присущий» в отличие от термина «присвоенный» означает «имеющийся в чем-то». Прежде всего это относится к постоянным характеристикам.

    [ИСО 9000:2000, определение 3.1.1]

    Источник: ГОСТ Р ИСО 21247-2007: Статистические методы. Комбинированные системы нуль-приемки и процедуры управления процессом при выборочном контроле продукции оригинал документа

    3.2.1 качество (quality): Степень соответствия совокупности присущих характеристик требованиям.

    Источник: ГОСТ Р 54147-2010: Стратегический и инновационный менеджмент. Термины и определения оригинал документа

    3.2.15 управление качеством (quality): Часть менеджмента качества, направленная на выполнение требований к качеству.

    Источник: ГОСТ Р 54147-2010: Стратегический и инновационный менеджмент. Термины и определения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > quality

  • 3 machinery

    1. организационный аппарат
    2. оборудование
    3. механизм
    4. машины и оборудование
    5. машины
    6. машинное оборудование

     

    машинное оборудование
    термин " машинное оборудование" означает:
    - сборочную единицу, состоящую из соединенных частей или компонентов, по крайней мере, одна из которых находится в движении, имеет соответствующие приводы, схему управления, цепь питания, и т.д., соединенные вместе с целью специального применения, в частности, для производства, обработки, перемещения или упаковки материала;
    - группу машин, которые для достижения той же цели организованы и управляется таким образом, что они функционируют как единое целое;
    - взаимозаменяемое оборудование, модифицирующее функции машины, которое отдельно поставляется на рынок и предназначено для установки на машине или на серии различных машин или на приводном устройстве самим оператором, при условии, что данное оборудование не является запасной частью или инструментом.
    [Директива 98/37/ЕЭС по машинному оборудованию]

    EN

    machinery
    ‘machinery’ means:
    — an assembly of linked parts or components, at least one of which moves, with the appropriate
    actuators, control and power circuits, etc., joined together for a specific application, in particular
    for the processing, treatment, moving or packaging of a material,
    — an assembly of machines which, in order to achieve the same end, are arranged and controlled so that they function as an integral whole,
    — interchangeable equipment modifying the function of a machine, which is placed on the market for the purpose of being assembled with a machine or a series of different machines or with a tractor by the operator himself in so far as this equipment is not a spare part or a tool
    [DIRECTIVE 98/37/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL]

    Параллельные тексты EN-RU

    3. The following are excluded from the scope of this Directive:

    3. Из области применения данной Директивы исключаются:

    — machinery whose only power source is directly applied manual effort, unless it is a machine used for lifting or lowering loads,

    - машинное оборудование, для которых источником энергии является исключительно непосредственное применение ручной силы, за исключением механизмов для подъема и опускания грузов;

    — machinery for medical use used in direct contact with patients,

    - медицинские приборы;

    — special equipment for use in fairgrounds and/or amusement parks,

    - специальное оборудование для использования в аттракционах и/или парках для развлечений;

    — steam boilers, tanks and pressure vessels,

    - паровые котлы, резервуары и сосуды под давлением;

    — machinery specially designed or put into service for nuclear purposes which, in the event of failure, may result in an emission of radioactivity,

    - машинное оборудование, специально сконструированное или используемое в атомной отрасли, которые в случае аварии могут привести к выделению радиоактивных веществ;

    — radioactive sources forming part of a machine,

    - радиоактивные источники, составляющие часть машин;

    — firearms,

    - стрелковое оружие;

    — storage tanks and pipelines for petrol, diesel fuel, inflammable liquids and dangerous substances,

    - емкости для хранения или трубопроводы для бензина, дизельного топлива, огнеопасных жидкостей и опасных веществ;

    — means of transport, i.e. vehicles and their trailers intended solely for transporting passengers by air or on road, rail or water networks, as well as means of transport in so far as such means are designed for transporting goods by air, on public road or rail networks or on water. Vehicles used in the mineral extraction industry shall not be excluded,

    - транспортные средства, т.е. средства перевозки и их прицепы, предназначенные исключительно для перевозки пассажиров по воздуху, автодороге, железной дороге, или водными путями, а также транспортные средства, сконструированные для транспортировки грузов по воздуху, по общедоступным дорогам, железным дорогам или водным путям. Средства транспортировки, используемые в горнодобывающей промышленности, не исключаются из области применения настоящей Директивы;

    — seagoing vessels and mobile offshore units together with equipment on board such vessels or units,

    - морские суда и мобильные береговые агрегаты вместе с оборудованием на борту, такие как танки или установки;

    — cableways, including funicular railways, for the public or private transportation of persons,

    - канатные дороги, включая фуникулерные железные дороги для общественного или частного пользования, предназначенные для транспортировки людей;

    — agricultural and forestry tractors, as defined in Article 1(1) of Directive 74/150/EEC (1),

    (1) Council Directive 74/150/EEC of 4 March 1974 on the approximation of the laws of the Member States relating to the type-approval of wheeled agricultural or forestry tractors (OJ L 84, 28.3.1974, p. 10). Directive as last amended by Decision 95/1/EC, Euratom, ECSC (OJ L 1.1.1995, p. 1).

    -сельскохозяйственные и лесные тракторы, подпадающие под определение статьи 1 (1) Директивы Совета 74/150/ЕЭС(1);

    (1) Директива Совета 74/150/ЕЭС от 4 марта 1974 г. по сближению законодательных актов Государств-членов, относящихся к одобрению типов колесных сельскохозяйственных или лесных тракторов (Официальный журнал Европейских сообществ № L 84, 28.3.1974 г., стр.10). Директива, измененная последний раз Решением 95/1/ЕЭС, Евроатом, ECSC (Официальный журнал Европейских сообществ № L 1/1/1995 г., стр 1)

    — machines specially designed and constructed for military or police purposes,

    - машины, специально сконструированные и созданные для военных и полицейских целей;

    — lifts which permanently serve specific levels of buildings and constructions, having a car moving between guides which are rigid and inclined at an angle of more than 15 degrees to the horizontal and designed for the transport of:
    (i) persons;
    (ii) persons and goods;
    (iii) goods alone if the car is accessible, that is to say, a person may enter it without difficulty, and fitted with controls situated inside the car or within reach of a person inside,

    - лифты и подъемные устройства, постоянно обслуживающие определенные уровни зданий и конструкций, имеющие транспортную тележку, движущуюся между жесткими направляющими, которые имеют угол наклона более 15 градусов к горизонтальной поверхности и сконструированы для транспортировки:
    (i) людей;
    (ii) людей и имущества;
    (iii) только имущества, в том случае, если кабина лифта открыта, т.е. человек может легко войти в такое транспортное средство и манипулировать средствами управления, находящимися внутри кабины или в пределах досягаемости для человека;

    — means of transport of persons using rack and pinion rail mounted vehicles,

    - транспортные средства для перевозки людей, с использованием зубчатых или реечных рельс, по которым перемещается транспортные средства;

    — mine winding gear,

    - шахтные канатные подъемные устройства;

    — theatre elevators,

    - театральные подъемники;

    — construction site hoists intended for lifting persons or persons and goods.

    - строительные подъемники, предназначенные для подъема людей или людей и грузов.

    4. Where, for machinery or safety components, the risks referred to in this Directive are wholly or partly covered by specific Community Directives, this Directive shall not apply, or shall cease to apply, in the case of such machinery or safety components and of such risks on the implementation of these specific Directives.

    4. Когда для машинного оборудования и компонентов безопасности риски, определенные в настоящей Директиве, полностью или частично покрываются специальными Директивами Сообщества, настоящая Директива не применяется или прекращает свое действие, такое машинное оборудование и компоненты безопасности и такие риски подпадают под действие этих специальных Директив.

    5. Where, for machinery, the risks are mainly of electrical origin, such machinery shall be covered exclusively by Directive 73/23/EEC (2).

    (2) Council Directive 73/23/EEC of 19 February 1973 on the harmonisation of the laws of Member States relating to electrical equipment designed for use within certain voltage limits (OJ L 77, 26.3.1973, p. 29). Directive as last amended by Directive 93/68/EEC (OJ L 220, 30.8.1993, p. 1).

    5. Когда риски применения машинного оборудования связаны с электрическими источниками, то такое оборудование охватываются исключительно Директивой 73/23/ЕЭС(2).

    (2) Директива Совета 73/23/ЕЭС/ от 19 февраля 1973 года о гармонизации законов Государств-Участников в отношении электрооборудования, предназначенного для использования в условиях определенных пределов напряжения (Официальный журнал Европейских сообществ № L 77, 26.03.1973, стр. 29). Директива с последней поправкой Директивой 93/68/ЕЭС (Официальный журнал Европейских сообществ № L 220, 30.08.1993, стр.1).

    Article 2
    1. Member States shall take all appropriate measures to ensure that machinery or safety components covered by this Directive may be placed on the market and put into service only if they do not endanger the health or safety of persons and, where appropriate, domestic animals or property, when properly installed and maintained and used for their intended purpose.

    Статья 2
    1. Государства - члены должны предпринимать все необходимые меры для обеспечения того, чтобы машинное оборудование или компоненты безопасности, попадающие под действие настоящей Директивы, поставлялись на рынок и вводились в эксплуатацию, только если они не составляют угрозу для здоровья и безопасности людей и домашних животных, или имуществу при условии надлежащей установки и обслуживания, а также использования по прямому назначению.

    2. This Directive shall not affect Member States’ entitlement to lay down, in due observance of the Treaty, such requirements as they may deem necessary to ensure that persons and in particular workers are protected when using the machinery or safety components in question, provided that this does not mean that the machinery or safety components are modified in a way not specified in the Directive.

    2. Настоящая Директива не ограничивает права Государств - членов устанавливать при должном соблюдении Договора такие требования, которые они посчитают необходимыми для обеспечения защиты людей, особенно работников, при использовании машинного оборудования или компонентов безопасности, при условии, что модификация такого машинного оборудования и компонентов безопасности была произведена в соответствии с положениями настоящей Директивы.

    3. At trade fairs, exhibitions, demonstrations, etc., Member States shall not prevent the showing of machinery or safety components which do not conform to the provisions of this Directive, provided that a visible sign clearly indicates that such machinery or safety components do not conform and that they are not for sale until they have been brought into conformity by the manufacturer or his authorised representative established in the Community. During demonstrations, adequate safety measures shall be taken to ensure the protection of persons.

    3. На торговых ярмарках, выставках, демонстрациях и т.п. Государства - члены не должны препятствовать демонстрации машинного оборудования или компонентов безопасности, которые не соответствуют положениям настоящей Директивы, при условии, что видимый знак четко указывает, что такое машинное оборудование или компоненты безопасности не соответствуют данной Директиве, и что они не предназначаются для продажи до тех пор, пока изготовитель или его уполномоченный представитель в Сообществе не приведет их в полное соответствие с Директивой. Во время демонстраций должны приниматься адекватные меры для обеспечения безопасности граждан.

    Article 3
    Machinery and safety components covered by this Directive shall satisfy the essential health and safety requirements set out in Annex I.

    Статья 3
    Машинное оборудование, а также компоненты безопасности, относящиеся к области действия настоящей Директивы, должны полностью удовлетворять основным требованиям по обеспечению здоровья и безопасности, изложенным в Приложении 1.

    Article 4
    1. Member States shall not prohibit, restrict or impede the placing on the market and putting into service in their territory of machinery and safety components which comply with this Directive.

    Статья 4
    1. Государства - члены не должны запрещать, ограничивать или препятствовать поставке на рынок машинного оборудования, а также компонентов безопасности, которые соответствуют
    требованиям настоящей Директивы.

    2. Member States shall not prohibit, restrict or impede the placing on the market of machinery where the manufacturer or his authorised representative established in the Community declares in accordance with point B of Annex II that it is intended to be incorporated into machinery or assembled with other machinery to constitute machinery covered by this Directive, except where it can function independently.

    ‘Interchangeable equipment’, as referred to in the third indent of Article 1(2)(a), must in all cases bear the CE marking and be accompanied by the EC declaration of conformity referred to in Annex II, point A.

    2. Государства - члены не должны запрещать, ограничивать или препятствовать поставке на рынок машинного оборудования, если изготовитель или его уполномоченный представитель в Сообществе заявляет в соответствии с Приложением II B, что они предназначены для включения в машинное оборудование или компоноваться с другим оборудованием, так, что в соединении они составят машинное оборудование, отвечающее требованиям настоящей Директивы, за исключением тех случаев, когда они могут функционировать независимо.

    "Взаимозаменяемое оборудование" в смысле третьего абзаца с черточкой в Статье 1 (2) (a) должно во всех случаях иметь маркировку "СЕ" и сопровождаться декларацией соответствия, определенной в Приложении II, пункте А.

    3. Member States may not prohibit, restrict or impede the placing on the market of safety components as defined in Article 1(2) where they are accompanied by an EC declaration of conformity by the manufacturer or his authorised representative established in the Community as referred to in Annex II, point C.

    3. Государства - члены не имеют права запрещать, ограничивать или препятствовать распространению на рынке компонентов безопасности, определенных Статьей 1 (2), если эти компоненты сопровождаются декларацией соответствия ЕС, заявленной изготовителем или его уполномоченным представителем в Сообществе, как определено в Приложении II, пункте С.

    Article 5
    1. Member States shall regard the following as conforming to all the provisions of this Directive, including the procedures for checking the conformity provided for in Chapter II:
    — machinery bearing the CE marking and accompanied by the EC declaration of conformity referred to in Annex II, point A,
    — safety components accompanied by the EC declaration of conformity referred to in Annex II, point C.

    Статья 5
    1. Государства - члены должны считать нижеследующее соответствующим всем положениям настоящей Директивы, включая процедуры проверки соответствия, предусмотренной в Главе II:
    - машинное оборудование, имеющее маркировку "СЕ" и сопровождаемое декларацией соответствия ЕС, как указано в Приложении II, пункте A;
    - компоненты безопасности, сопровождаемые декларацией соответствия ЕС, как указано в Приложении II, пункте C.

    При отсутствии гармонизированных стандартов Государства - члены должны предпринимать любые меры, которые они сочтут необходимыми, для привлечения внимания заинтересованных сторон к существующим национальным техническим стандартам и спецификациям, которые считаются важными или относятся к выполнению основных требований по обеспечению здоровья и безопасности в соответствии с Приложением 1.

    2. Where a national standard transposing a harmonised standard, the reference for which has been published in the Official Journal of the European Communities, covers one or more of the essential safety requirements, machinery or safety components constructed in accordance with this standard shall be presumed to comply with the relevant essential requirements.
    Member States shall publish the references of national standards transposing harmonised standards.

    2. В тех случаях, когда национальный стандарт, заменяющий гармонизированный стандарт, ссылка на который была опубликована в Официальном журнале Европейских сообществ, покрывает одно или несколько основных требований безопасности, машинное оборудование или компоненты безопасности, сконструированные в соответствии с таким стандартом, должны считаться соответствующими основным требованиям.
    Государства - члены должны публиковать ссылки на национальные стандарты, заменяющие гармонизированные стандарты.

    3. Member States shall ensure that appropriate measures are taken to enable the social partners to have an influence at national level on the process of preparing and monitoring the harmonised standards.

    3. Государства - члены должны обеспечивать принятие необходимых мер для того, чтобы их социальные партнеры получали возможность влиять на национальном уровне на процессы подготовки и отслеживания гармонизированных стандартов.

    Article 6
    1. Where a Member State or the Commission considers that the harmonised standards referred to in Article 5(2) do not entirely satisfy the essential requirements referred to in Article 3, the Commission or the Member State concerned shall bring the matter before the committee set up under Directive 83/189/EEC, giving the reasons therefor. The committee shall deliver an opinion without delay.
    Upon receipt of the committee’s opinion, the Commission shall inform the Member States whether or not it is necessary to withdraw those standards from the published information referred to in Article 5(2).

    Статья 6
    1. В случае, если Государство - член или Комиссия считают, что гармонизированные стандарты, рассмотренные в Статье 5 (2), не полностью соответствуют основным требованиям, определенным в Статье 3, Комиссия или заинтересованное Государство - член должны поставить этот вопрос на рассмотрение комитета, созданного в соответствии с Директивой 83/189/ЕЭС, обосновав причины такого обращения. Комитет должен безотлагательно вынести решение.
    После получения такого решения комитета Комиссия должна информировать Государства – члены, необходимо или нет отозвать эти стандарты из опубликованной информации, определенной в Статье 5 (2).

    2. A standing committee shall be set up, consisting of representatives appointed by the Member States and chaired by a representative of the Commission.

    The standing committee shall draw up its own rules of procedure.

    Any matter relating to the implementation and practical application of this Directive may be brought before the standing committee, in accordance with the following procedure:

    The representative of the Commission shall submit to the committee a draft of the measures to be taken. The committee shall deliver its opinion on the draft, within a time limit which the chairman may lay down according to the urgency of the matter, if necessary by taking a vote.

    The opinion shall be recorded in the minutes; in addition, each Member State shall have the right to ask to have its position recorded in the minutes.
    The Commission shall take the utmost account of the opinion delivered by the committee.
    It shall inform the committee of the manner in which its opinion has been taken into account.

    2. Должен быть создан постоянно действующий комитет, состоящий из представителей, назначенных Государствами – членами, и возглавляемый представителем Комиссии.

    Постоянно действующий комитет будет сам устанавливать порядок действий и процедуры.

    Любой вопрос, относящийся к выполнению и практическому применению настоящей Директивы, может быть поставлен на рассмотрение постоянно действующего комитета, в соответствии со следующими правилами:

    Представитель Комиссии должен представить комитету проект предполагаемых к принятию мер. Комитет должен выразить свое мнение по проекту за время, установленное председателем в соответствии со срочностью вопроса, при необходимости определяемого путем голосования.

    Это мнение должно быть зафиксировано в протоколе; кроме того, каждое Государство - член имеет право потребовать отразить свою позицию в протоколе. Комиссия должна максимально учитывать мнение, вынесенное комитетом.
    Она должна проинформировать комитет, каким образом было учтено его мнение.

    Article 7
    1. Where a Member State ascertains that:
    — machinery bearing the CE marking, or
    — safety components accompanied by the EC declaration of conformity, used in accordance with their intended purpose are liable to endanger the safety of persons, and, where appropriate, domestic animals or property, it shall take all appropriate measures to withdraw such machinery or safety components from the market, to prohibit the placing on the market, putting into service or use thereof, or to restrict free movement thereof.

    Member States shall immediately inform the Commission of any such measure, indicating the reason for its decision and, in particular, whether non-conformity is due to:
    (a) failure to satisfy the essential requirements referred to in Article 3;
    (b) incorrect application of the standards referred to in Article 5(2);
    (c) shortcomings in the standards themselves referred to in Article 5(2).

    Статья 7
    1. Если Государство - член устанавливает, что:
    - машинное оборудование, имеющее маркировку "СЕ", либо
    - компоненты безопасности, сопровождаемые декларацией соответствия ЕС, используемые в соответствии с их назначением, могут нести угрозу безопасности людям, и, если это имеет место, домашним животным или собственности, оно должно принять все необходимые меры для изъятия такого машинного оборудования, либо компонентов безопасности с рынка, запретить их поставку на рынок, ввод в эксплуатацию или использование, либо ограничить их свободное обращение.

    Государства - члены должны немедленно информировать Комиссию о любых подобных мерах, указать причины такого решения и, в особенности, информировать о том, явилось ли это несоответствие результатом:
    a) неспособности удовлетворить основным требованиям, определенным в Статье 3;
    b) неправильного применения стандартов, определенных в Статье 5 (п.2);
    c) недостатков самих стандартов, определенных в Статье 5 (п. 2).

    2. The Commission shall enter into consultation with the parties concerned without delay. Where the Commission considers, after this consultation, that the measure is justified, it shall immediately so inform the Member State which took the initiative and the other Member States. Where the Commission considers, after this consultation, that the action is unjustified, it shall immediately so inform the Member State which took the initiative and the manufacturer or his authorised representative established within the Community.

    Where the decision referred to in paragraph 1 is based on a shortcoming in the standards, and where the Member State at the origin of the decision maintains its position, the Commission shall immediately inform the committee in order to initiate the procedures referred to in Article 6(1).

    2. Комиссия должна безотлагательно провести консультацию с заинтересованными сторонами. В случае, если после проведения такой консультации, Комиссия полагает, что такая мера обоснована, она должна немедленно информировать об этом Государство - член, которое выдвинуло эту инициативу, а также остальные Государства - члены. Если Комиссия после проведения такой консультации полагает, что действия не были обоснованными, она немедленно извещает об этом Государство - член, проявившее инициативу, и изготовителя, либо его уполномоченного представителя в Сообществе.

    Если решение, указанное в параграфе 1, основано на недостатках в стандартах, и если Государство - член на основании такого решения сохраняет свои позиции, то Комиссия должна немедленно информировать комитет для того, чтобы начать процедуры, описанные в Статье 6 (п. 1).

    3. Where:
    — machinery which does not comply bears the CE marking,
    — a safety component which does not comply is accompanied by an EC declaration of conformity,
    the competent Member State shall take appropriate action against whom so ever has affixed the marking or drawn up the declaration and shall so inform the Commission and other Member States.

    3. Если:
    - машинное оборудование, не соответствующие требованиям, имеют маркировку "СЕ",
    - компоненты безопасности, не соответствующие требованиям, имеют декларацию соответствия ЕС,
    компетентное Государство - член должно начать соответствующие действия против любого, кто поставил маркировку, или составил декларацию, и должно проинформировать об этом Комиссию и другие Государства - члены.

    4. The Commission shall ensure that Member States are kept informed of the progress and outcome of this procedure.

    4. Комиссия должна обеспечить, чтобы Государства – члены были постоянно информированы о ходе и результатах данной процедуры.

    CHAPTER II
    CONFORMITY ASSESSMENT PROCEDURES
    Article 8

    1. The manufacturer or his authorised representative established in the Community must, in order to certify that machinery and safety components are in conformity with this Directive, draw up for all machinery or safety components manufactured an EC declaration of conformity based on the model given in Annex II, point A or C as appropriate.

    In addition, for machinery alone, the manufacturer or his authorised representatives established in the Community must affix to the machine the CE marking.

    Глава II
    Процедуры оценки соответствия
    Статья 8

    1. Для подтверждения того, что машинное оборудование, а также компоненты безопасности соответствуют положениям настоящей Директивы, изготовитель или его уполномоченный представитель в Сообществе должен составить декларацию ЕС о соответствии на произведенное машинное оборудование и компоненты безопасности по образцу, приведенному в Приложении II, соответственно пунктам A или C.

    Корме того, на машинное оборудование изготовитель или его уполномоченный представитель в Сообществе должен нанести маркировку "СЕ" в соответствии со Статьей 10.

    2. Before placing on the market, the manufacturer, or his authorised representative established in the Community, shall:
    (a) if the machinery is not referred to in Annex IV, draw up the file provided for in Annex V;
    (b) if the machinery is referred to in Annex IV and its manufacturer does not comply, or only partly complies, with the standards referred to in Article 5(2) or if there are no such standards, submit an example of the machinery for the EC type-examination referred to in Annex VI;
    (c) if the machinery is referred to in Annex IV and is manufactured in accordance with the standards referred to in Article 5(2):
    — either draw up the file referred to in Annex VI and forward it to a notified body, which will acknowledge receipt of the file as soon as possible and keep it,
    — submit the file referred to in Annex VI to the notified body, which will simply verify that the standards referred to in Article 5(2) have been correctly applied and will draw up a certificate of adequacy for the file,
    — or submit the example of the machinery for the EC type-examination referred to in Annex VI.

    2. Перед поставкой на рынок изготовитель или его уполномоченный представитель в Сообществе должен:
    (a) в случае, если машинное оборудование не указано в Приложении IV, составить документацию, предусмотренную Приложением V;
    (b) если машинное оборудование указано в Приложении IV, и их изготовитель не выполняет, либо выполняет лишь частично требования стандартов, упомянутых в Статье 5 (2), либо, если таких стандартов не существует, то представить образец машинного оборудования для его испытания ЕС, определенного в Приложении VI;
    (c) если машинное оборудование указано в Приложении IV и изготовлено в соответствии со стандартами, определенными в Статье 5 (п. 2):
    - либо составить документацию, указанную в Приложении VI, и передать ее нотифицированному органу, который подтверждает получение документации в возможно короткие сроки, а также сохраняет ее;
    - представить документацию, указанную в Приложении VI, нотифицированному органу, который просто проверит, что стандарты, упомянутые в Статье 5 (2), были применены правильно и составит сертификат соответствия по этой документации;
    - либо представить образец машинного оборудования для испытания ЕС типового образца, определенного в Приложении VI.

    3. Where the first indent of paragraph 2(c) of this Article applies, the provisions of the first sentence of paragraphs 5 and 7 of Annex VI shall also apply.

    Where the second indent of paragraph 2(c) of this Article applies, the provisions of paragraphs 5, 6 and 7 of Annex VI shall also apply.

    3. В тех случаях, когда может быть применен первый абзац параграфа 2 (с) этой Статьи должны также применяться положения первого предложения параграфов 5 и 7 Приложения VI.

    В тех случаях, когда может быть применен второй абзац пункта 2 (с), должны также применяться положения параграфов 5, 6 и 7 Приложения VI.

    4. Where paragraph 2(a) and the first and second indents of paragraph 2(c) apply, the EC declaration of conformity shall solely state conformity with the essential requirements of the Directive.

    Where paragraph 2(b) and the third indent of paragraph 2(c) apply, the EC declaration of conformity shall state conformity with the example that underwent EC type-examination.

    4. В тех случаях, когда применяется параграф 2 (а) и первый и второй абзацы параграфа 2 (c), декларация ЕС о соответствии должна удостоверить соответствие основным требованиям настоящей Директивы.

    В случае, когда применяется параграф 2 (b) и третий абзац параграфа 2 (c), декларация ЕС о соответствии должна удостоверить соответствие образцу, прошедшему испытание ЕС типового образца.

    5. Safety components shall be subject to the certification procedures applicable to machinery pursuant to paragraphs 2, 3 and 4. Furthermore, during EC type-examination, the notified body shall verify the suitability of the safety component for fulfilling the safety functions declared by the manufacturer.

    5.Компоненты безопасности должны подвергаться процедурам сертификации, применимым к машинному оборудованию в соответствии с параграфами 2, 3, 4. Более того, во время испытания ЕС типового образца нотифицированный орган должен проверить пригодность компонентов безопасности для выполнения тех функций безопасности, которые заявлены изготовителем.

    6. (a) Where the machinery is subject to other Directives concerning other aspects and which also provide for the affixing of the CE marking, the latter shall indicate that the machinery is also presumed to conform to the provisions of those other Directives.
    (b) However, where one or more of those Directives allow the manufacturer, during a transitional period, to choose which arrangements to apply, the CE marking shall indicate conformity only to the Directives applied by the manufacturer. In this case, particulars of the Directives applied, as published in the Official Journal of the European Communities, must be given in the documents, notices or instructions required by the directives and accompanying such machinery.

    6. (a) В тех случаях, когда машинное оборудование подпадает под действие Директив по другим аспектам, которые также предусматривают нанесение маркировки "СЕ", последняя указывает, что такое машинное оборудование соответствуют положениям этих прочих директив.
    (b) Тем не менее, когда одна или несколько таких Директив позволяют изготовителям в течение переходного периода выбирать, какие из положений применить, маркировка "СЕ" будет указывать на соответствие только тем Директивам, которые применялись изготовителем. В этом случае подробная информация о примененных Директивах, опубликованных в Официальном журнале Европейских сообществ, должен приводиться в документах, аннотациях или инструкциях, требуемых в соответствии с Директивами, и сопровождать такое машинное оборудование.

    7. Where neither the manufacturer nor his authorised representative established in the Community fulfils the obligations of paragraphs 1 to 6, these obligations shall fall to any person placing the machinery or safety component on the market in the Community. The same obligations shall apply to any person assembling machinery or parts thereof or safety components of various origins or constructing machinery or safety components for his own use.

    7. Если ни изготовитель, ни его уполномоченный представитель в Сообществе не выполнят своих обязательств по предыдущим параграфам, то эти обязательства должны быть выполнены любыми лицами, поставляющими машинное оборудование или компоненты безопасности на рынок Сообщества. Такие же обязательства возлагаются на любые лица, осуществляющие сборку машинного оборудования, либо его частей или компонентов безопасности различного происхождения, либо создающие машинное оборудование или компоненты безопасности для собственного пользования.

    8. The obligations referred to in paragraph 7 shall not apply to persons who assemble with a machine or tractor interchangeable equipment as provided for in Article 1, provided that the parts are compatible and each of the constituent parts of the assembled machine bears the CE marking and is accompanied by the EC declaration of conformity.

    8. Обязательства, изложенные в параграфе 7, не применяются к лицам, которые собирают с машиной, механизмом или транспортным средством взаимозаменяемое оборудование, указанное в Статье 1, при условии, что эти части совместимы, и каждая из частей машины в сборе имеет маркировку "СЕ" и Декларацию ЕС о соответствии.

    Article 9
    1. Member States shall notify the Commission and the other Member States of the approved bodies which they have appointed to carry out the procedures referred to in Article 8 together with the specific tasks which these bodies have been appointed to carry out and the identification numbers assigned to them beforehand by the Commission.
    The Commission shall publish in the Official Journal of the European Communities a list of the notified bodies and their identification numbers and the tasks for which they have been notified. The Commission shall ensure that this list is kept up to date.

    Статья 9
    1. Государства - члены должны уведомить Комиссию и другие Государства - члены об утвержденных органах, которые назначаются для выполнения процедур, описанных в Статье 8, также как и для различных особых задач, которые этим органам предназначено выполнять, и об идентификационных номерах, предварительно присвоенных им Комиссией.

    В Официальном журнале Европейских сообществ Комиссия должна публиковать список таких нотифицированных органов и их идентификационные номера, а также задачи, для решения которых они предназначены. Комиссия должна обеспечить своевременность обновления списка.

    2. Member States shall apply the criteria laid down in Annex VII in assessing the bodies to be indicated in such notification. Bodies meeting the assessment criteria laid down in the relevant harmonised standards shall be presumed to fulfil those criteria.

    2. Государства - члены должны применять критерии, изложенные в Приложении VII, для определения органов, которые будут указаны в таких назначениях. Органы, удовлетворяющие критериям, изложенным в соответствующих гармонизированных стандартах, считаются соответствующими критериям.

    3. A Member State which has approved a body must withdraw its notification if it finds that the body no longer meets the criteria referred to in Annex VII. It shall immediately inform the Commission and the other Member States accordingly.

    3. Государство - член, утвердившее такой орган, должно отменить его назначение, если оно обнаружит, что он больше не соответствует критериям, изложенным в Приложении VII. Государство - член должно немедленно известить об этом Комиссию и другие Государства - члены.

    CHAPTER III
    CE MARKING
    Article 10
    1. The CE conformity marking shall consist of the initials ‘CE’. The form of the marking to be used is shown in Annex III.

    ГЛАВА III
    МАРКИРОВКА "СЕ"
    Статья 10
    1. Маркировка "СЕ" состоит из заглавных букв "СЕ". Форма маркировки, которая будет использоваться, указана в Приложении III.

    2. The CE marking shall be affixed to machinery distinctly and visibly in accordance with point 1.7.3 of Annex I.

    2. Маркировка "СЕ" должна наноситься на машинное оборудование четко, на видном месте в соответствии с пунктом 1.7.3. Приложения I.

    3. The affixing of markings on the machinery which are likely to deceive third parties as to the meaning and form of the CE marking shall be prohibited. Any other marking may be affixed to the machinery provided that the visibility and legibility of the CE marking is not thereby reduced.

    3. Нанесение маркировок на машинное оборудование таким образом, что это может ввести в заблуждение относительно значения и формы маркировки "СЕ", запрещено. Любые другие маркировки могут быть нанесены на машинное оборудование таким образом, чтобы не мешать видимости и различимости маркировки "СЕ".

    4. Without prejudice to Article 7:
    (a) where a Member State establishes that the CE marking has been affixed unduly, the manufacturer or his authorised representative established within the Community shall be obliged to make the product conform as regards the provisions concerning the CE marking and to end the infringement under the conditions imposed by the Member State;

    (b) where non-conformity continues, the Member State must take all appropriate measures to restrict or prohibit the placing on the market of the product in question or to ensure that it is withdrawn from the market in accordance with the procedure laid down in Article 7.

    4. Без ограничения применения Статьи 7:
    (a) если Государство - член устанавливает, что маркировка "СЕ" была нанесена неправильно, изготовитель или его уполномоченный представитель в Сообществе будет обязан привести продукцию в соответствии с положениями, касающимися маркировки "СЕ" и положить конец нарушениям на условиях, установленных Государством - членом;

    (b) если такое несоответствие будет продолжаться, то Государство - член должно принять все соответствующие меры для ограничения или запрещения поставки на рынок такой продукции, либо обеспечить изъятие ее с рынка в соответствии с процедурами, изложенными в Статье 7.

    CHAPTER IV
    FINAL PROVISIONS
    Article 11

    Any decision taken pursuant to this Directive which restricts the placing on the market and putting into service of machinery or a safety component shall state the exact grounds on which it is based. Such a decision shall be notified as soon as possible to the party concerned, who shall at the same time be informed of the legal remedies available to him under the laws in force in the Member State concerned and of the time limits to which such remedies are subject.

    ГЛАВА IV
    ЗАКЛЮЧИТЕЛЬНЫЕ ПОЛОЖЕНИЯ
    Статья 11

    Любое решение, принятое в исполнение настоящей Директивы, ограничивающее поставку на рынок и ввод в эксплуатацию машинного оборудования или компонентов безопасности, должно указывать точные причины, на которых оно основано. Такое решение должно быть по возможности быстро доведено до сведения заинтересованных сторон, их также следует проинформировать о законных мерах, которые могут быть предприняты по действующему законодательству в соответствующем Государстве - члене и о сроках, в которые данные меры применяются.

    Article 12
    The Commission will take the necessary steps to have information on all the relevant decisions relating to the management of this Directive made available.

    Статья 12
    Комиссия предпримет все необходимые шаги для получения информации по всем соответствующим решениям, касающимся применения и распространения настоящей Директивы.

    Article 13
    1. Member States shall communicate to the Commission the texts of the provisions of national law which they adopt in the field governed by this Directive.

    2. The Commission shall, before 1 January 1994, examine the progress made in the standardisation work relating to this Directive and propose any appropriate measures.

    Статья 13
    1. Государства - члены должны передать Комиссии тексты положений национальных законодательных актов, принимаемых в сфере, определяемой настоящей Директивой.

    2. Комиссия должна до 1 января 1994 г. изучить развитие работ по стандартизации, относящиеся к области действия настоящей Директивы и предложить любые целесообразные меры.

    Тематики

    EN

     

    машины
    оборудование


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва]

    машины
    Машина представляет собой аппарат, использующий или применяющий механическую энергию, состоящий из нескольких частей — каждая со своими определенными функциями, которые вместе выполняют некоторые виды работ. Для целей анализа это понятие включает отдельные машины или наборы машин. См. Машины и оборудование (МСО)
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

     

    машины и оборудование

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    машины и оборудование
    МСО
    Часть основных фондов компании (предприятия), которая включает устройства, преобразующие энергию, материалы и информацию. В аналитической и оценочной практике в общее понятие М. и о. включаются отдельно оцениваемые установки, машины, оборудование и транспортные средства, подразделяемые на виды, а каждый вид – на марки (последним термином для краткости можно обозначать разные модели и модификации машины). Разные марки машин одного вида используются для одних и тех же целей: они способны производить одну и ту же продукцию, выполнять одни и те же работы или оказывать одни и те же услуги ( в противном случае их надо относить в другому виду машин), а следовательно, «взаимозаменяемы» и являются товарами, конкурирующими между собой на рынке Рынок машин каждого вида делится на первичный (новые М..) и вторичный (бывшие в эксплуатации), для которых применяются разные оценочные приемы и инструменты.. М.и о. являются главным объектом инвестирования при разработке и реализации инвестиционного проекта, и, соответственно, одним из основных элементов оценки инвестиционных проектов. Важно, что в отличие от ценных бумаг, акций, М.и о. являются объектами реальных инвестиций, а не финансовых инвестиций.
    [ http://slovar-lopatnikov.ru/]

    EN

    machinery
    A group of parts or machines arranged to perform a useful function. (Source: MGH)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    Синонимы

    EN

    DE

    FR

     

    механизм
    Совокупность подвижно соединённых звеньев, совершающих под действием приложенных сил заранее определённые целесообразные движения
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    машины, механизмы

    Совокупность связанных между собой частей и устройств, как минимум одно из которых движется, имеет соответствующий привод, органы управления и энергетические узлы, соединенные вместе для определенного применения, например для обработки, переработки, производства, транспортирования или упаковки материалов.
    Термины «машина» и «механизм» также распространяются на совокупность машин, которые размещаются и управляются таким образом, чтобы функционировать как единое целое.
    Примечание
    В приложении А приведено общее схематическое изображение машины.
    [ ГОСТ Р ИСО 12100-1:2007]

    EN

    DE

    FR

     

    оборудование
    Совокупность связанных между собой частей или устройств, из которых по крайней мере одно движется, а также элементы привода, управления и энергетические узлы, которые предназначены для определенного применения, в частности для обработки, производства, перемещения или упаковки материала. К термину «оборудование» относят также машину и совокупность машин, которые так устроены и управляемы, что они функционируют как единое целое для достижения одной и той же цели.
    [ГОСТ ЕН 1070-2003]

    оборудование
    -

    [IEV number 151-11-25 ]

    оборудование
    Оснащение, материалы, приспособления, устройства, механизмы, приборы, инструменты и другие принадлежности, используемые в качестве частей электрической установки или в соединении с ней.
    [ ГОСТ Р МЭК 60204-1-2007]

    EN

    equipment
    single apparatus or set of devices or apparatuses, or the set of main devices of an installation, or all devices necessary to perform a specific task
    NOTE – Examples of equipment are a power transformer, the equipment of a substation, measuring equipment.
    [IEV number 151-11-25 ]

    equipment
    material, fittings, devices, components, appliances, fixtures, apparatus, and the like used as part of, or in connection with, the electrical equipment of machines
    [IEC 60204-1-2006]

    FR

    équipement, m
    matériel, m
    appareil unique ou ensemble de dispositifs ou appareils, ou ensemble des dispositifs principaux d'une installation, ou ensemble des dispositifs nécessaires à l'accomplissement d'une tâche particulière
    NOTE – Des exemples d’équipement ou de matériel sont un transformateur de puissance, l’équipement d’une sous-station, un équipement de mesure.
    [IEV number 151-11-25]

    Тематики

    EN

    DE

    FR

     

    организационный аппарат

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    3.26 машины (machinery): Устройство, состоящее из соединенных между собой частей или компонентов, по крайней мере, один из которых движется, с соответствующими исполнительными механизмами, силовыми цепями и цепями управления и т.д., объединенных вместе в целях конкретного применения, в частности, для обработки, переработки, перемещения или упаковки материала (материал означает эквивалент вещества или изделия).

    Термин «машины» одновременно означает совокупность машин и механизмов, которые для достижения одной и той же цели установлены и управляются таким образом, что они функционируют как единое целое.

    Источник: ГОСТ Р ЕН 1127-2-2009: Взрывоопасные среды. Взрывозащита и предотвращение взрыва. Часть 2. Основополагающая концепция и методология (для подземных выработок)

    Англо-русский словарь нормативно-технической терминологии > machinery

  • 4 economico-mathematical studies in the ex-USSR and russia

    1. экономико-математические исследования в бывш. СССР и России

     

    экономико-математические исследования в бывш. СССР и России
    (исторический очерк) Э.-м.и. — направление научных исследований, которые ведутся на стыке экономики, математики и кибернетики и имеют основной целью повышение экономической эффективности общественного производства с помощью математического анализа экономических процессов и явлений и основанных на нем методов принятия оптимальных (шире — рациональных) плановых и иных управленческих решений. Они затрагивают также общую проблематику оптимального распределения ресурсов безотносительно к характеру социально-экономического строя. Развитие Э.-м.и. в бывш. СССР надо рассматривать как этап противоречивого процесса развития отечественной экономической науки и часть общего процесса развития мировой экономической науки, в настоящее время во многом практически математизированной. Первым достижением в развитии Э.-м.и. явилась разработка советскими учеными межотраслевого баланса производства и распределения продукции в народном хозяйстве страны за 1923/24 хозяйственный год. В основу методологии их исследования были положены модели воспроизводства К.Маркса, а также модели В.К.Дмитриева. Эта работа нашла международное признание и предвосхитила развитие американским экономистом русского происхождения В.В.Леонтьевым его прославленного метода «затраты-выпуск».. (Впоследствии, после длительного перерыва, вызванного тем, что Сталин потребовал прекратить межотраслевые исследования, они стали широко применяться и в нашей стране под названием метода межотраслевого баланса.) Примерно в это же время советский экономист Г.А.Фельдман представил в Комиссию по составлению первого пятилетнего плана доклад «К теории темпов народного дохода», в котором предложил ряд моделей анализа и планирования синтетических показателей развития экономики. Этим самым были заложены основы теории экономического роста. Другой выдающийся ученый Н.К.Кондратьев разработал теорию долговременных экономических циклов, нашедшую мировое признание. Однако в начале тридцатых годов Э.м.и. в СССР были практически свернуты, а Фельдман, Кондратьев и сотни других советских экономистов были репрессированы, погибли в застенках Гулага. Продолжались лишь единичные, разрозненные исследования. В одном из них, работе Л.В.Канторовича «Математические методы организации и планирования производства» (1939 г.) были впервые изложены принципы новой отрасли математики, которая позднее получила название линейного программирования, а если смотреть шире, то этим были заложены основы фундаментальной для экономики теории оптимального распределения ресурсов. Л.В.Канторович четко сформулировал понятие экономического оптимума и ввел в науку оптимальные, объективно обусловленные оценки — средство решения и анализа оптимизационных задач. Одновременно советский экономист В.В.Новожилов пришел к аналогичным выводам относительно распределения ресурсов. Он выработал понятие оптимального плана народного хозяйства, как такого плана, который требует для заданного объема продукции наименьшей суммы трудовых затрат, и ввел понятия, позволяющие находить этот минимум: в частности, понятие «дифференциальных затрат народного хозяйства по данному продукту», близкое по смыслу к оптимальным оценкам Л.В.Канторовича. Большой вклад в разработку экономико-математических методов внес академик В.С.Немчинов: он создал ряд новых моделей МОБ, в том числе модель экономического района; очень велики его заслуги в области организационного оформления и развития экономико-математического направления советской науки. Он основал первую в стране экономико-математическую лабораторию, впоследствии на ее базе и на базе нескольких других коллективов был создан Центральный экономико-математический институт АН СССР, ныне ЦЭМИ РАН (см.ниже).. В 1965 г. академикам Л.В.Канторовичу, В.С.Немчинову и проф. В.В.Новожилову за научную разработку метода линейного программирования и экономических моделей была присуждена Ленинская премия. В 1975 г. Л.В.Канторович был также удостоен Нобелевской премии по экономике. В 50 — 60-x гг. развернулась широкая работа по составлению отчетных, а затем и плановых МОБ народного хозяйства СССР и отдельных республик. За цикл исследований по разработке методов анализа и планирования межотраслевых связей и отраслевой структуры народного хозяйства, построению плановых и отчетных МОБ академику А.Н.Ефимову (руководитель работы), Э.Ф.Баранову, Л.Я.Берри, Э.Б.Ершову, Ф.Н.Клоцвогу, В.В.Коссову, Л.Е.Минцу, С.С.Шаталину, М.Р.Эйдельману в 1968 г. была присуждена Государственная премия СССР. Развитие Э.-м.и., накопление опыта решения экономико-математических задач, выработка новых теоретических положений и переосмысление многих старых положений экономической науки, вызванное ее соединением с математикой и кибернетикой, позволили в начале 60-х гг. академику Н.П.Федоренко выступить с идеей о необходимости теоретической разработки и поэтапной реализации единой системы оптимального функционирования социалистической экономики (СОФЭ). Стало ясно, что внедрение математических методов в экономические исследования должно приводить и приводит к совершенствованию всей системы экономических знаний, обеспечивает дальнейшую систематизацию, уточнение и развитие основных понятий и категорий науки, усиливает ее действенность, т.е. прежде всего ее влияние на рост эффективности народного хозяйства. С 60-х годов расширилось число научных учреждений, ведущих Э.-м.и., в частности, были созданы Центральный экономико-математический институт АН СССР, Институт экономики и организации промышленного производства СО АН СССР, развернулась подготовка кадров экономистов-математиков и специалистов по экономической кибернетике в МГУ, НГУ, МИНХ им. Плеханова и других вузах страны. Исследования охватили теоретическую разработку проблем оптимального функционирования экономики, системного анализа, а также такие прикладные области как отраслевое перспективное планирование, материально-техническое снабжение, создание математических методов и моделей для автоматизированных систем управления предприятиями и отраслями. На первых этапах возрождения Э.-м.и. в СССР усилия в области моделирования концентрировались на построении макромоделей, отражающих функционирование народного хозяйства страны в целом, а также ряда частных моделей и на развитии соответствующего математического аппарата. Такие попытки имели немалое методологическое значение и способствовали углублению понимания общих вопросов экономико-математического моделироdания (в том числе таких, как адекватность моделей, границы их познавательных возможностей и т.д.). Но скоро стала очевидна ограниченность такого подхода. Концепция СОФЭ стимулировала развитие иного подхода — системного моделирования экономических процессов, были расширены методологические поиски экономических рычагов воздействия на экономику: оптимального ценообразования, платы за использование природных и трудовых ресурсов и т.д. На этой основе начались параллельные разработки ряда систем моделей, из которых наиболее известны многоуровневая система среднесрочного прогнозирования (рук. Б.Н.Михалевский), система моделей для расчетов по определению общих пропорций развития народного хозяйства и согласованию отраслевых и территориальных разрезов плана — СМОТР (рук. Э.Ф.Баранов), система многоступенчатой оптимизации экономики (рук. В.Ф.Пугачев), межотраслевая межрайонная модель (рук. А.Г.Гранберг). Существенно углубилось понимание народнохозяйственного оптимума, роли и места экономических стимулов в его достижении. Наряду с распространенной ранее скалярной оптимизацией в исследованиях стала более активно применяться многокритериальная, лучше учитывающая многосложность условий и обстоятельств решения плановой задачи. Более того, стало меняться общее отношение к оптимизации как универсальному принципу: вместе с ней (но не вместо нее, как иногда можно прочитать) начали разрабатываться методы принятия рациональных (не обязательно оптимальных в строгом смысле этого слова) решений, теория компромисса и неантагонистических игр (Ю.Б.Гермейер) и другие методы, учитывающие не только технико-экономические, но и человеческие факторы: интересы участников процессов принятия и реализации решений. В начале 70-х гг. экономисты-математики провели широкие исследования в области применения программно-целевых методов в планировании и управлении народным хозяйством. Они приняли также активное участие в разработке методики регулярного (раз в пять лет) составления Комплексной программы научно-технического прогресса на очередное двадцатилетие. Впервые в работе такого масштаба при определении общих пропорций развития народного хозяйства на перспективу и решении некоторых частных задач был использован аппарат экономико-математических методов. Началось широкое внедрение программно-целевого метода в практику народнохозяйственного планирования. Были продолжены работы по созданию АСПР — автоматизированной системы плановых расчетов Госплана СССР и Госпланов союзных республик, и в 1977 г. введена в действие ее первая очередь, а в 1985 г. — вторая очередь. Выявились и немалые трудности непосредственного внедрения оптимизационных принципов в практику хозяйствования. В условиях, когда предприятия, объединения, отраслевые министерства были заинтересованы не столько в выявлении производственных резервов, сколько в их сокрытии, чтобы избежать получения напряженных плановых заданий, учитывающих эти резервы, оптимизация не могла найти повсеместную поддержку: ее смысл как раз в выявлении резервов. Поэтому работа по созданию АСУ не всегда давала должные результаты: усилия затрачивались на учет, анализ, расчеты по заработной плате, но не на оптимизацию, т.е. повышение эффективности производства (оптимизационные задачи в большинстве АСУ занимали лишь 2 — 3% общего объема решаемых задач). В результате эффективность производства не росла, а штаты управления увеличивались: создавались отделы АСУ, вычислительные центры. Эти обстоятельства способствовали некоторому спаду экономико-математических исследований к началу 80-х гг. Большой удар по экономико-математическому направлению был нанесен в 1983 г., когда бывший тогда секретарем ЦК КПСС К.У.Черненко обрушился с явно несправедливой и предвзятой критикой на ЦЭМИ АН СССР, после чего институт жестоко пострадал: подвергся реорганизации, был разделен надвое, потом еще раз надвое, из него ушел ряд ведущих ученых. Тем не менее, прошедшие годы ознаменовались серьезными научными и практическими достижениями экономико-математического крыла советской экономической науки. В ряде аспектов, прежде всего теоретических — оно заняло передовые позиции в мировой науке. Например, в области математической экономики и эконометрии (не говоря уже об открытиях Л.В.Канторовича) широко известны советские исследования процессов оптимального экономического роста (В.Л.Макаров, С.М.Мовшович, А.М.Рубинов и др.), ряд моделей экономического равновесия; сделанная еще в 1976 г. В.М.Полтеровичем попытка синтеза теории равновесия и теории экономического роста; работы отечественных ученых в области теории игр, теории группового (социального) выбора и многие другие. В каком-то смысле опережая время, экономисты-математики еще в 70-е гг. приступили к моделированию и изучению таких явлений, приобретших острую актуальность в период перестройки, как «самоусиление дефицита», экономика двух рынков — с фиксированными и гибкими ценами, функционирование экономики в условиях неравновесия. Активно развивается математический аппарат, в частности, такие его разделы, как линейное и нелинейное программирование (Е.Г.Гольштейн), дискретное программирование (А.А.Фридман), теория оптимального управления (Л.С.Понтрягин и его школа), методы прикладного математико-статистического анализа (С.А.Айвазян). За последние годы развернулось широкое использование имитационных методов, являющихся характерной чертой современного этапа развития экономико-математических методов. Хотя сама по себе идея машинной имитации зародилась существенно раньше, ее практическая реализация оказалась возможной именно теперь, когда появились электронные вычислительные машины новых поколений, обеспечивающие прямой диалог человека с машиной. Наконец, новым направлением прикладной работы, синтезирующим достижения в области экономико-математического моделирования и информатики, стала разработка и реализация концепции АРМ (автоматизированного рабочего места плановика и экономиста), а также концепции стендового экспериментирования над экономическими системами (В.Л.Макаров). Начинается (во всяком случае должна начинаться) переориентация Э.-м.и. на изучение путей формирования и эффективного функционирования рынка (особенно переходного процесса — это самостоятельная тема). Тут может быть использован богатый арсенал экономико-математических методов, накопленный не только в нашей стране, но и в странах с развитой рыночной экономикой.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > economico-mathematical studies in the ex-USSR and russia

  • 5 three-phase UPS

    1. трехфазный источник бесперебойного питания (ИБП)

     

    трехфазный ИБП
    -
    [Интент]


    Глава 7. Трехфазные ИБП

    ... ИБП большой мощности (начиная примерно с 10 кВА) как правило предназначены для подключения к трехфазной электрической сети. Диапазон мощностей 8-25 кВА – переходный. Для такой мощности делают чисто однофазные ИБП, чисто трехфазные ИБП и ИБП с трехфазным входом и однофазным выходом. Все ИБП, начиная примерно с 30 кВА имеют трехфазный вход и трехфазный выход. Трехфазные ИБП имеют и другое преимущество перед однофазными ИБП. Они эффективно разгружают нейтральный провод от гармоник тока и способствуют более безопасной и надежной работе больших компьютерных систем. Эти вопросы рассмотрены в разделе "Особенности трехфазных источников бесперебойного питания" главы 8. Трехфазные ИБП строятся обычно по схеме с двойным преобразованием энергии. Поэтому в этой главе мы будем рассматривать только эту схему, несмотря на то, что имеются трехфазные ИБП, построенные по схеме, похожей на ИБП, взаимодействующий с сетью.

    Схема трехфазного ИБП с двойным преобразованием энергии приведена на рисунке 18.

    4929
    Рис.18. Трехфазный ИБП с двойным преобразованием энергии

    Как видно, этот ИБП не имеет почти никаких отличий на уровне блок-схемы, за исключением наличия трех фаз. Для того, чтобы увидеть отличия от однофазного ИБП с двойным преобразованием, нам придется (почти впервые в этой книге) несколько подробнее рассмотреть элементы ИБП. Мы будем проводить это рассмотрение, ориентируясь на традиционную технологию. В некоторых случаях будут отмечаться схемные особенности, позволяющие улучшить характеристики.

    Выпрямитель

    Слева на рис 18. – входная электрическая сеть. Она включает пять проводов: три фазных, нейтраль и землю. Между сетью и ИБП – предохранители (плавкие или автоматические). Они позволяют защитить сеть от аварии ИБП. Выпрямитель в этой схеме – регулируемый тиристорный. Управляющая им схема изменяет время (долю периода синусоиды), в течение которого тиристоры открыты, т.е. выпрямляют сетевое напряжение. Чем большая мощность нужна для работы ИБП, тем дольше открыты тиристоры. Если батарея ИБП заряжена, на выходе выпрямителя поддерживается стабилизированное напряжение постоянного тока, независимо от нвеличины напряжения в сети и мощности нагрузки. Если батарея требует зарядки, то выпрямитель регулирует напряжение так, чтобы в батарею тек ток заданной величины.

    Такой выпрямитель называется шести-импульсным, потому, что за полный цикл трехфазной электрической сети он выпрямляет 6 полупериодов сингусоиды (по два в каждой из фаз). Поэтому в цепи постоянного тока возникает 6 импульсов тока (и напряжения) за каждый цикл трехфазной сети. Кроме того, во входной электрической сети также возникают 6 импульсов тока, которые могут вызвать гармонические искажения сетевого напряжения. Конденсатор в цепи постоянного тока служит для уменьшения пульсаций напряжения на аккумуляторах. Это нужно для полной зарядки батареи без протекания через аккумуляторы вредных импульсных токов. Иногда к конденсатору добавляется еще и дроссель, образующий совместно с конденсатором L-C фильтр.

    Коммутационный дроссель ДР уменьшает импульсные токи, возникающие при открытии тиристоров и служит для уменьшения искажений, вносимых выпрямителем в электрическую сеть. Для еще большего снижения искажений, вносимых в сеть, особенно для ИБП большой мощности (более 80-150 кВА) часто применяют 12-импульсные выпрямители. Т.е. за каждый цикл трехфазной сети на входе и выходе выпрямителя возникают 12 импульсов тока. За счет удвоения числа импульсов тока, удается примерно вдвое уменьшить их амплитуду. Это полезно и для аккумуляторов и для электрической сети.

    Двенадцати-импульсный выпрямитель фактически состоит из двух 6-импульсных выпрямителей. На вход второго выпрямителя (он изображен ниже на рис. 18) подается трехфазное напряжение, прошедшее через трансформатор, сдвигающий фазу на 30 градусов.

    В настоящее время применяются также и другие схемы выпрямителей трехфазных ИБП. Например схема с пассивным (диодным) выпрямителем и преобразователем напряжения постоянного тока, применение которого позволяет приблизить потребляемый ток к синусоидальному.

    Наиболее современным считается транзисторный выпрямитель, регулируемый высокочастотной схемой широтно-импульсной модуляции (ШИМ). Применение такого выпрямителя позволяет сделать ток потребления ИБП синусоидальным и совершенно отказаться от 12-импульсных выпрямителей с трансформатором.

    Батарея

    Для формирования батареи трехфазных ИБП (как и в однофазных ИБП) применяются герметичные свинцовые аккумуляторы. Обычно это самые распространенные модели аккумуляторов с расчетным сроком службы 5 лет. Иногда используются и более дорогие аккумуляторы с большими сроками службы. В некоторых трехфазных ИБП пользователю предлагается фиксированный набор батарей или батарейных шкафов, рассчитанных на различное время работы на автономном режиме. Покупая ИБП других фирм, пользователь может более или менее свободно выбирать батарею своего ИБП (включая ее емкость, тип и количество элементов). В некоторых случаях батарея устанавливается в корпус ИБП, но в большинстве случаев, особенно при большой мощности ИБП, она устанавливается в отдельном корпусе, а иногда и в отдельном помещении.

    Инвертор

    Как и в ИБП малой мощности, в трехфазных ИБП применяются транзисторные инверторы, управляемые схемой широтно-импульсной модуляции (ШИМ). Некоторые ИБП с трехфазным выходом имеют два инвертора. Их выходы подключены к трансформаторам, сдвигающим фазу выходных напряжений. Даже в случае применения относительно низкочастоной ШИМ, такая схема совместно с применением фильтра переменного тока, построенного на трансформаторе и конденсаторах, позволяет обеспечить очень малый коэффициент гармонических искажений на выходе ИБП (до 3% на линейной нагрузке). Применение двух инверторов увеличивает надежность ИБП, поскольку даже при выходе из строя силовых транзисторов одного из инверторов, другой инвертор обеспечит работу нагрузки, пусть даже при большем коэффициенте гармонических искажений.

    В последнее время, по мере развития технологии силовых полупроводников, начали применяться более высокочастотные транзисторы. Частота ШИМ может составлять 4 и более кГц. Это позволяет уменьшить гармонические искажения выходного напряжения и отказаться от применения второго инвертора. В хороших ИБП существуют несколько уровней защиты инвертора от перегрузки. При небольших перегрузках инвертор может уменьшать выходное напряжение (пытаясь снизить ток, проходящий через силовые полупроводники). Если перегрузка очень велика (например нагрузка составляет более 125% номинальной), ИБП начинает отсчет времени работы в условиях перегрузки и через некоторое время (зависящее от степени перегрузки – от долей секунды до минут) переключается на работу через статический байпас. В случае большой перегрузки или короткого замыкания, переключение на статический байпас происходит сразу.

    Некоторые современные высококлассные ИБП (с высокочакстотной ШИМ) имеют две цепи регулирования выходного напряжения. Первая из них осуществляет регулирование среднеквадратичного (действующего) значения напряжения, независимо для каждой из фаз. Вторая цепь измеряет мгновенные значения выходного напряжения и сравнивает их с хранящейся в памяти блока управления ИБП идеальной синусоидой. Если мгновенное значение напряжения отклонилось от соотвествующего "идеального" значения, то вырабатывается корректирующий импульс и форма синусоиды выходного напряжения исправляется. Наличие второй цепи обратной связи позволяет обеспечить малые искажения формы выходного напряжения даже при нелинейных нагрузках.

    Статический байпас

    Блок статического байпаса состоит из двух трехфазных (при трехфазном выходе) тиристорных переключателей: статического выключателя инвертора (на схеме – СВИ) и статического выключателя байпаса (СВБ). При нормальной работе ИБП (от сети или от батареи) статический выключатель инвертора замкнут, а статический выключатель байпаса разомкнут. Во время значительных перегрузок или выхода из строя инвертора замкнут статический переключатель байпаса, переключатель инвертора разомкнут. В момент переключения оба статических переключателя на очень короткое время замкнуты. Это позволяет обеспечить безразрывное питание нагрузки.

    Каждая модель ИБП имеет свою логику управления и, соответственно, свой набор условий срабатывания статических переключателей. При покупке ИБП бывает полезно узнать эту логику и понять, насколько она соответствует вашей технологии работы. В частности хорошие ИБП сконструированы так, чтобы даже если байпас недоступен (т.е. отсутствует синхронизация инвертора и байпаса – см. главу 6) в любом случае постараться обеспечить электроснабжение нагрузки, пусть даже за счет уменьшения напряжения на выходе инвертора.

    Статический байпас ИБП с трехфазным входом и однофазным выходом имеет особенность. Нагрузка, распределенная на входе ИБП по трем фазным проводам, на выходе имеет только два провода: один фазный и нейтральный. Статический байпас тоже конечно однофазный, и синхронизация напряжения инвертора производится относительно одной из фаз трехфазной сети (любой, по выбору пользователя). Вся цепь, подводящая напряжение к входу статического байпаса должна выдерживать втрое больший ток, чем входной кабель выпрямителя ИБП. В ряде случаев это может вызвать трудности с проводкой.

    Сервисный байпас

    Трехфазные ИБП имеют большую мощность и обычно устанавливаются в местах действительно критичных к электропитанию. Поэтому в случае выхода из строя какого-либо элемента ИБП или необходимости проведения регламентных работ (например замены батареи), в большинстве случае нельзя просто выключить ИБП или поставить на его место другой. Нужно в любой ситуации обеспечить электропитание нагрузки. Для этих ситуаций у всех трехфазных ИБП имеется сервисный байпас. Он представляет собой ручной переключатель (иногда как-то заблокированный, чтобы его нельзя было включить по ошибке), позволяющий переключить нагрузку на питание непосредственно от сети. У большинства ИБП для переключения на сервисный байпас существует специальная процедура (определенная последовательность действий), которая позволяет обеспечит непрерывность питания при переключениях.

    Режимы работы трехфазного ИБП с двойным преобразованием

    Трехфазный ИБП может работать на четырех режимах работы.

    • При нормальной работе нагрузка питается по цепи выпрямитель-инвертор стабилизированным напряжением, отфильтрованным от импульсов и шумов за счет двойного преобразования энергии.
    • Работа от батареи. На это режим ИБП переходит в случае, если напряжение на выходе ИБП становится таким маленьким, что выпрямитель оказывается не в состоянии питать инвертор требуемым током, или выпрямитель не может питать инвертор по другой причине, например из-за поломки. Продолжительность работы ИБП от батареи зависит от емкости и заряда батареи, а также от нагрузки ИБП.
    • Когда какой-нибудь инвертор выходит из строя или испытывает перегрузку, ИБП безразрывно переходит на режим работы через статический байпас. Нагрузка питается просто от сети через вход статического байпаса, который может совпадать или не совпадать со входом выпрямителя ИБП.
    • Если требуется обслуживание ИБП, например для замены батареи, то ИБП переключают на сервисный байпас. Нагрузка питается от сети, а все цепи ИБП, кроме входного выключателя сервисного байпаса и выходных выключателей отделены от сети и от нагрузки. Режим работы на сервисном байпасе не является обязательным для небольших однофазных ИБП с двойным преобразованием. Трехфазный ИБП без сервисного байпаса немыслим.

    Надежность

    Трехфазные ИБП обычно предназначаются для непрерывной круглосуточной работы. Работа нагрузки должна обеспечиваться практически при любых сбоях питания. Поэтому к надежности трехфазных ИБП предъявляются очень высокие требования. Вот некоторые приемы, с помощью которых производители трехфазных ИБП могут увеличивать надежность своей продукции. Применение разделительных трансформаторов на входе и/или выходе ИБП увеличивает устойчивость ИБП к скачкам напряжения и нагрузки. Входной дроссель не только обеспечивает "мягкий запуск", но и защищает ИБП (и, в конечном счете, нагрузку) от очень быстрых изменений (скачков) напряжения.

    Обычно фирма выпускает целый ряд ИБП разной мощности. В двух или трех "соседних по мощности" ИБП этого ряда часто используются одни и те же полупроводники. Если это так, то менее мощный из этих двух или трех ИБП имеет запас по предельному току, и поэтому несколько более надежен. Некоторые трехфазные ИБП имеют повышенную надежность за счет резервирования каких-либо своих цепей. Так, например, могут резервироваться: схема управления (микропроцессор + платы "жесткой логики"), цепи управления силовыми полупроводниками и сами силовые полупроводники. Батарея, как часть ИБП тоже вносит свой вклад в надежность прибора. Если у ИБП имеется возможность гибкого выбора батареи, то можно выбрать более надежный вариант (батарея более известного производителя, с меньшим числом соединений).

    Преобразователи частоты

    Частота напряжения переменного тока в электрических сетях разных стран не обязательно одинакова. В большинстве стран (в том числе и в России) распространена частота 50 Гц. В некоторых странах (например в США) частота переменного напряжения равна 60 Гц. Если вы купили оборудование, рассчитанное на работу в американской электрической сети (110 В, 60 Гц), то вы должны каким-то образом приспособить к нему нашу электрическую сеть. Преобразование напряжения не является проблемой, для этого есть трансформаторы. Если оборудование оснащено импульсным блоком питания, то оно не чувствительно к частоте и его можно использовать в сети с частотой 50 Гц. Если же в состав оборудования входят синхронные электродвигатели или иное чувствительное к частоте оборудование, вам нужен преобразователь частоты. ИБП с двойным преобразованием энергии представляет собой почти готовый преобразователь частоты.

    В самом деле, ведь выпрямитель этого ИБП может в принципе работать на одной частоте, а инвертор выдавать на своем выходе другую. Есть только одно принципиальное ограничение: невозможность синхронизации инвертора с линией статического байпаса из-за разных частот на входе и выходе. Это делает преобразователь частоты несколько менее надежным, чем сам по себе ИБП с двойным преобразованием. Другая особенность: преобразователь частоты должен иметь мощность, соответствующую максимальному возможному току нагрузки, включая все стартовые и аварийные забросы, ведь у преобразователя частоты нет статического байпаса, на который система могла бы переключиться при перегрузке.

    Для изготовления преобразователя частоты из трехфазного ИБП нужно разорвать цепь синхронизации, убрать статический байпас (или, вернее, не заказывать его при поставке) и настроить инвертор ИБП на работу на частоте 60 Гц. Для большинства трехфазных ИБП это не представляет проблемы, и преобразователь частоты может быть заказан просто при поставке.

    ИБП с горячим резервированием

    В некоторых случаях надежности даже самых лучших ИБП недостаточно. Так бывает, когда сбои питания просто недопустимы из-за необратимых последствий или очень больших потерь. Обычно в таких случаях в технике применяют дублирование или многократное резервирование блоков, от которых зависит надежность системы. Есть такая возможность и для трехфазных источников бесперебойного питания. Даже если в конструкцию ИБП стандартно не заложено резервирование узлов, большинство трехфазных ИБП допускают резервирование на более высоком уровне. Резервируется целиком ИБП. Простейшим случаем резервирования ИБП является использование двух обычных серийных ИБП в схеме, в которой один ИБП подключен к входу байпаса другого ИБП.

    4930

    Рис. 19а. Последовательное соединение двух трехфазных ИБП

    На рисунке 19а приведена схема двух последовательно соединенным трехфазных ИБП. Для упрощения на рисунке приведена, так называемая, однолинейная схема, на которой трем проводам трехфазной системы переменного тока соответствует одна линия. Однолинейные схемы часто применяются в случаях, когда особенности трехфазной сети не накладывают отпечаток на свойства рассматриваемого прибора. Оба ИБП постоянно работают. Основной ИБП питает нагрузку, а вспомогательный ИБП работает на холостом ходу. В случае выхода из строя основного ИБП, нагрузка питается не от статического байпаса, как в обычном ИБП, а от вспомогательного ИБП. Только при выходе из строя второго ИБП, нагрузка переключается на работу от статического байпаса.

    Система из двух последовательно соединенных ИБП может работать на шести основных режимах.

    А. Нормальная работа. Выпрямители 1 и 2 питают инверторы 1 и 2 и, при необходимости заряжают батареи 1 и 2. Инвертор 1 подключен к нагрузке (статический выключатель инвертора 1 замкнут) и питает ее стабилизированным и защищенным от сбоев напряжением. Инвертор 2 работает на холостом ходу и готов "подхватить" нагрузку, если инвертор 1 выйдет из строя. Оба статических выключателя байпаса разомкнуты.

    Для обычного ИБП с двойным преобразованием на режиме работы от сети допустим (при сохранении гарантированного питания) только один сбой в системе. Этим сбоем может быть либо выход из строя элемента ИБП (например инвертора) или сбой электрической сети.

    Для двух последовательно соединенных ИБП с на этом режиме работы допустимы два сбоя в системе: выход из строя какого-либо элемента основного ИБП и сбой электрической сети. Даже при последовательном или одновременном возникновении двух сбоев питание нагрузки будет продолжаться от источника гарантированного питания.

    Б. Работа от батареи 1. Выпрямитель 1 не может питать инвертор и батарею. Чаще всего это происходит из-за отключения напряжения в электрической сети, но причиной может быть и выход из строя выпрямителя. Состояние инвертора 2 в этом случае зависит от работы выпрямителя 2. Если выпрямитель 2 работает (например он подключен к другой электрической сети или он исправен, в отличие от выпрямителя 1), то инвертор 2 также может работать, но работать на холостом ходу, т.к. он "не знает", что с первым ИБП системы что-то случилось. После исчерпания заряда батареи 1, инвертор 1 отключится и система постарается найти другой источник электроснабжения нагрузки. Им, вероятно, окажется инвертор2. Тогда система перейдет к другому режиму работы.

    Если в основном ИБП возникает еще одна неисправность, или батарея 1 полностью разряжается, то система переключается на работу от вспомогательного ИБП.

    Таким образом даже при двух сбоях: неисправности основного ИБП и сбое сети нагрузка продолжает питаться от источника гарантированного питания.

    В. Работа от инвертора 2. В этом случае инвертор 1 не работает (из-за выхода из строя или полного разряда батареи1). СВИ1 разомкнут, СВБ1 замкнут, СВИ2 замкнут и инвертор 2 питает нагрузку. Выпрямитель 2, если в сети есть напряжение, а сам выпрямитель исправен, питает инвертор и батарею.

    На этом режиме работы допустим один сбой в системе: сбой электрической сети. При возникновении второго сбоя в системе (выходе из строя какого-либо элемента вспомогательного ИБП) электропитание нагрузки не прерывается, но нагрузка питается уже не от источника гарантированного питания, а через статический байпас, т.е. попросту от сети.

    Г. Работа от батареи 2. Наиболее часто такая ситуация может возникнуть после отключения напряжения в сети и полного разряда батареи 1. Можно придумать и более экзотическую последовательность событий. Но в любом случае, инвертор 2 питает нагругку, питаясь, в свою очередь, от батареи. Инвертор 1 в этом случае отключен. Выпрямитель 1, скорее всего, тоже не работает (хотя он может работать, если он исправен и в сети есть напряжение).

    После разряда батареи 2 система переключится на работу от статического байпаса (если в сети есть нормальное напряжение) или обесточит нагрузку.

    Д. Работа через статический байпас. В случае выхода из строя обоих инверторов, статические переключатели СВИ1 и СВИ2 размыкаются, а статические переключатели СВБ1 и СВБ2 замыкаются. Нагрузка начинает питаться от электрической сети.

    Переход системы к работе через статический байпас происходит при перегрузке системы, полном разряде всех батарей или в случае выхода из строя двух инверторов.

    На этом режиме работы выпрямители, если они исправны, подзаряжают батареи. Инверторы не работают. Нагрузка питается через статический байпас.

    Переключение системы на работу через статический байпас происходит без прерывания питания нагрузки: при необходимости переключения сначала замыкается тиристорный переключатель статического байпаса, и только затем размыкается тиристорный переключатель на выходе того инвертора, от которого нагрузка питалась перед переключением.

    Е. Ручной (сервисный) байпас. Если ИБП вышел из строя, а ответственную нагрузку нельзя обесточить, то оба ИБП системы с соблюдением специальной процедуры (которая обеспечивает безразрыное переключение) переключают на ручной байпас. после этого можно производить ремонт ИБП.

    Преимуществом рассмотренной системы с последовательным соединением двух ИБП является простота. Не нужны никакие дополнительные элементы, каждый из ИБП работает в своем штатном режиме. С точки зрения надежности, эта схема совсем не плоха:- в ней нет никакой лишней, (связанной с резервированием) электроники, соответственно и меньше узлов, которые могут выйти из строя.

    Однако у такого соединения ИБП есть и недостатки. Вот некоторые из них.
     

    1. Покупая такую систему, вы покупаете второй байпас (на нашей схеме – он первый – СВБ1), который, вообще говоря, не нужен – ведь все необходимые переключения могут быть произведены и без него.
    2. Весь второй ИБП выполняет только одну функцию – резервирование. Он потребляет электроэнергию, работая на холостом ходу и вообще не делает ничего полезного (разумеется за исключением того времени, когда первый ИБП отказывается питать нагрузку). Некоторые производители предлагают "готовые" системы ИБП с горячим резервированием. Это значит, что вы покупаете систему, специально (еще на заводе) испытанную в режиме с горячим резервированием. Схема такой системы приведена на рис. 19б.

    4931

    Рис.19б. Трехфазный ИБП с горячим резервированием

    Принципиальных отличий от схемы с последовательным соединением ИБП немного.

    1. У второго ИБП отсутствует байпас.
    2. Для синхронизации между инвертором 2 и байпасом появляется специальный информационный кабель между ИБП (на рисунке не показан). Поэтому такой ИБП с горячим резервированием может работать на тех же шести режимах работы, что и система с последовательным подключением двух ИБП. Преимущество "готового" ИБП с резервированием, пожалуй только одно – он испытан на заводе-производителе в той же комплектации, в которой будет эксплуатироваться.

    Для расмотренных схем с резервированием иногда применяют одно важное упрощение системы. Ведь можно отказаться от резервирования аккумуляторной батареи, сохранив резервирование всей силовой электроники. В этом случае оба ИБП будут работать от одной батареи (оба выпрямителя будут ее заряжать, а оба инвертора питаться от нее в случае сбоя электрической сети). Применение схемы с общей бетареей позволяет сэкономить значительную сумму – стоимость батареи.

    Недостатков у схемы с общей батареей много:

    1. Не все ИБП могут работать с общей батареей.
    2. Батарея, как и другие элементы ИБП обладает конечной надежностью. Выход из строя одного аккумулятора или потеря контакта в одном соединении могут сделать всю системы ИБП с горячим резервирование бесполезной.
    3. В случае выхода из строя одного выпрямителя, общая батарея может быть выведена из строя. Этот последний недостаток, на мой взгляд, является решающим для общей рекомендации – не применять схемы с общей батареей.


    Параллельная работа нескольких ИБП

    Как вы могли заметить, в случае горячего резервирования, ИБП резервируется не целиком. Байпас остается общим для обоих ИБП. Существует другая возможность резервирования на уровне ИБП – параллельная работа нескольких ИБП. Входы и выходы нескольких ИБП подключаются к общим входным и выходным шинам. Каждый ИБП сохраняет все свои элементы (иногда кроме сервисного байпаса). Поэтому выход из строя статического байпаса для такой системы просто мелкая неприятность.

    На рисунке 20 приведена схема параллельной работы нескольких ИБП.

    4932

    Рис.20. Параллельная работа ИБП

    На рисунке приведена схема параллельной системы с раздельными сервисными байпасами. Схема система с общим байпасом вполне ясна и без чертежа. Ее особенностью является то, что для переключения системы в целом на сервисный байпас нужно управлять одним переключателем вместо нескольких. На рисунке предполагается, что между ИБП 1 и ИБП N Могут располагаться другие ИБП. Разные производителю (и для разных моделей) устанавливают свои максимальные количества параллеьно работающих ИБП. Насколько мне известно, эта величина изменяется от 2 до 8. Все ИБП параллельной системы работают на общую нагрузку. Суммарная мощность параллельной системы равна произведению мощности одного ИБП на количество ИБП в системе. Таким образом параллельная работа нескольких ИБП может применяться (и в основном применяется) не столько для увеличения надежности системы бесперебойного питания, но для увеличения ее мощности.

    Рассмотрим режимы работы параллельной системы

    Нормальная работа (работа от сети). Надежность

    Когда в сети есть напряжение, достаточное для нормальной работы, выпрямители всех ИБП преобразуют переменное напряжение сети в постоянное, заряжая батареи и питая инверторы.

    Инверторы, в свою очередь, преобразуют постоянное напряжение в переменное и питают нагрузку. Специальная управляющая электроника параллельной системы следит за равномерным распределением нагрузки между ИБП. В некоторых ИБП распределение нагрузки между ИБП производится без использования специальной параллельной электроники. Такие приборы выпускаются "готовыми к параллельной работе", и для использования их в параллельной системе достаточно установить плату синхронизации. Есть и ИБП, работающие параллельго без специальной электроники. В таком случае количество параллельно работающих ИБП – не более двух. В рассматриваемом режиме работы в системе допустимо несколько сбоев. Их количество зависит от числа ИБП в системе и действующей нагрузки.

    Пусть в системе 3 ИБП мощностью по 100 кВА, а нагрузка равна 90 кВА. При таком соотношении числа ИБП и их мощностей в системе допустимы следующие сбои.

    Сбой питания (исчезновение напряжения в сети)

    Выход из строя любого из инверторов, скажем для определенности, инвертора 1. Нагрузка распределяется между двумя другими ИБП. Если в сети есть напряжение, все выпрямители системы работают.

    Выход из строя инвертора 2. Нагрузка питается от инвертора 3, поскольку мощность, потребляемая нагрузкой меньше мощности одного ИБП. Если в сети есть напряжение, все выпрямители системы продолжают работать.

    Выход из строя инвертора 3. Система переключается на работу через статический байпас. Нагрузка питается напрямую от сети. При наличии в сети нормального напряжения, все выпрямители работают и продолжают заряжать батареи. При любом последующем сбое (поломке статического байпаса или сбое сети) питание нагрузки прекращается. Для того, чтобы параллельная система допускала большое число сбоев, система должна быть сильно недогружена и должна включать большое число ИБП. Например, если нагрузка в приведенном выше примере будет составлять 250 кВА, то система допускает только один сбой: сбой сети или поломку инвертора. В отношении количества допустимых сбоев такая система эквивалентна одиночному ИБП. Это, кстати, не значит, что надежность такой параллельной системы будет такая же, как у одиночного ИБП. Она будет ниже, поскольку параллельная система намного сложнее одиночного ИБП и (при почти предельной нагрузке) не имеет дополнительного резервирования, компенсирующего эту сложность.

    Вопрос надежности параллельной системы ИБП не может быть решен однозначно. Надежность зависит от большого числа параметров: количества ИБП в системе (причем увеличение количества ИБП до бесконечности снижает надежность – система становится слишком сложной и сложно управляемой – впрочем максимальное количество параллельно работающих модулей для известных мне ИБП не превышает 8), нагрузки системы (т.е. соотношения номинальной суммарной мощности системы и действующей нагрузки), примененной схемы параллельной работы (т.е. есть ли в системе специальная электроника для обеспечения распределения нагрузки по ИБП), технологии работы предприятия. Таким образом, если единственной целью является увеличение надежности системы, то следует серьезно рассмотреть возможность использование ИБП с горячим резервированием – его надежность не зависит от обстоятельств и в силу относительной простоты схемы практически всегда выше надежности параллельной системы.

    Недогруженная система из нескольких параллельно работающих ИБП, которая способна реализвать описанную выше логику управления, часто также называется параллельной системой с резервированием.

    Работа с частичной нагрузкой

    Если нагрузка параллельной системы такова, что с ней может справиться меньшее, чем есть в системе количество ИБП, то инверторы "лишних" ИБП могут быть отключены. В некоторых ИБП такая логика управления подразумевается по умолчанию, а другие модели вообще лишены возможности работы в таком режиме. Инверторы, оставшиеся включенными, питают нагрузку. Коэффициент полезного действия системы при этом несколько возрастает. Обычно в этом режиме работы предусматривается некоторая избыточность, т.е. количестов работающих инверторов больше, чем необходимо для питания нагрузки. Тем самым обеспечивается резервирование. Все выпрямители системы продолжают работать, включая выпрямители тех ИБП, инверторы которых отключены.

    Работа от батареи

    В случае исчезновения напряжения в электрической сети, параллельная система переходит на работу от батареи. Все выпрямители системы не работают, инверторы питают нагрузку, получая энергию от батареи. В этом режиме работы (естественно) отсутствует напряжение в электрической сети, которое при нормальной работе было для ИБП не только источником энергии, но и источником сигнала синхронизации выходного напряжения. Поэтому функцию синхронизации берет на себя специальная параллельная электроника или выходная цепь ИБП, специально ориентированная на поддержание выходной частоты и фазы в соответствии с частотой и фазой выходного напряжения параллельно работающего ИБП.

    Выход из строя выпрямителя

    Это режим, при котором вышли из строя один или несколько выпрямителей. ИБП, выпрямители которых вышли из строя, продолжают питать нагрузку, расходуя заряд своей батареи. Они выдает сигнал "неисправность выпрямителя". Остальные ИБП продолжают работать нормально. После того, как заряд разряжающихся батарей будет полностью исчерпан, все зависит от соотношения мощности нагрузки и суммарной мощности ИБП с исправными выпрямителями. Если нагрузка не превышает перегрузочной способности этих ИБП, то питание нагрузки продолжится (если у системы остался значительный запас мощности, то в этом режиме работы допустимо еще несколько сбоев системы). В случае, если нагрузка ИБП превышает перегрузочную способность оставшихся ИБП, то система переходит к режиму работы через статический байпас.

    Выход из строя инвертора

    Если оставшиеся в работоспособном состоянии инверторы могут питать нагрузку, то нагрузка продолжает работать, питаясь от них. Если мощности работоспособных инверторов недостаточно, система переходит в режим работы от статического байпаса. Выпрямители всех ИБП могут заряжать батареи, или ИБП с неисправными инверторами могут быть полностью отключены для выполнения ремонта.

    Работа от статического байпаса

    Если суммарной мощности всех исправных инверторов параллельной системы не достаточно для поддержания работы нагрузки, система переходит к работе через статический байпас. Статические переключатели всех инверторов разомкнуты (исправные инверторы могут продолжать работать). Если нагрузка уменьшается, например в результате отключения части оборудования, параллельная система автоматически переключается на нормальный режим работы.

    В случае одиночного ИБП с двойным преобразованием работа через статический байпас является практически последней возможностью поддержания работы нагрузки. В самом деле, ведь достаточно выхода из строя статического переключателя, и нагрузка будет обесточена. При работе параллельной системы через статический байпас допустимо некоторое количество сбоев системы. Статический байпас способен выдерживать намного больший ток, чем инвертор. Поэтому даже в случае выхода из строя одного или нескольких статических переключателей, нагрузка возможно не будет обесточена, если суммарный допустимый ток оставшихся работоспособными статических переключателей окажется достаточен для работы. Конкретное количество допустимых сбоев системы в этом режиме работы зависит от числа ИБП в системе, допустимого тока статического переключателя и величины нагрузки.

    Сервисный байпас

    Если нужно провести с параллельной системой ремонтные или регламентные работы, то система может быть отключена от нагрузки с помощью ручного переключателя сервисного байпаса. Нагрузка питается от сети, все элементы параллельной системы ИБП, кроме батарей, обесточены. Как и в случае системы с горячим резервированием, возможен вариант одного общего внешнего сервисного байпаса или нескольких сервисных байпасов, встроенных в отдельные ИБП. В последнем случае при использовании сервисного байпаса нужно иметь в виду соотношение номинального тока сервисного байпаса и действующей мощности нагрузки. Другими словами, нужно включить столько сервисных байпасов, чтобы нагрузка не превышала их суммарный номинальных ток.
    [ http://www.ask-r.ru/info/library/ups_without_secret_7.htm]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > three-phase UPS

  • 6 smart metering

    1. интеллектуальный учет электроэнергии

     

    интеллектуальный учет электроэнергии
    -
    [Интент]

    Учет электроэнергии

    Понятия «интеллектуальные измерения» (Smart Metering), «интеллектуальный учет», «интеллектуальный счетчик», «интеллектуальная сеть» (Smart Grid), как все нетехнические, нефизические понятия, не имеют строгой дефиниции и допускают произвольные толкования. Столь же нечетко определены и задачи Smart Metering в современных электрических сетях.
    Нужно ли использовать эти термины в такой довольно консервативной области, как электроэнергетика? Что отличает новые системы учета электроэнергии и какие функции они должны выполнять? Об этом рассуждает Лев Константинович Осика.

    SMART METERING – «ИНТЕЛЛЕКТУАЛЬНЫЙ УЧЕТ» ЭЛЕКТРОЭНЕРГИИ

    Определения и задачи
    По многочисленным публикациям в СМИ, выступлениям на конференциях и совещаниях, сложившемуся обычаю делового оборота можно сделать следующие заключения:
    • «интеллектуальные измерения» производятся у потребителей – физических лиц, проживающих в многоквартирных домах или частных домовладениях;
    • основная цель «интеллектуальных измерений» и реализующих их «интеллектуальных приборов учета» в России – повышение платежной дисциплины, борьба с неплатежами, воровством электроэнергии;
    • эти цели достигаются путем так называемого «управления электропотреблением», под которым подразумеваются ограничения и отключения неплательщиков;
    • средства «управления электропотреблением» – коммутационные аппараты, получающие команды на включение/отключение, как правило, размещаются в одном корпусе со счетчиком и представляют собой его неотъемлемую часть.
    Главным преимуществом «интеллектуального счетчика» в глазах сбытовых компаний является простота осуществления отключения (ограничения) потребителя за неплатежи (или невнесенную предоплату за потребляемую электроэнергию) без применения физического воздействия на существующие вводные выключатели в квартиры (коттеджи).
    В качестве дополнительных возможностей, стимулирующих установку «интеллектуальных приборов учета», называются:
    • различного рода интеграция с измерительными приборами других энергоресурсов, с биллинговыми и информационными системами сбытовых и сетевых компаний, муниципальных администраций и т.п.;
    • расширенные возможности отображения на дисплее счетчика всей возможной (при первичных измерениях токов и напряжений) информации: от суточного графика активной мощности, напряжения, частоты до показателей надежности (времени перерывов в питании) и денежных показателей – стоимости потребления, оставшейся «кредитной линии» и пр.;
    • двухсторонняя информационная (и управляющая) связь сбытовой компании и потребителя, т.е. передача потребителю различных сообщений, дистанционная смена тарифа, отключение или ограничение потребления и т.п.

    ЧТО ТАКОЕ «ИНТЕЛЛЕКТУАЛЬНЫЕ ИЗМЕРЕНИЯ»?

    Приведем определение, данное в тематическом докладе комитета ЭРРА «Нормативные аспекты СМАРТ ИЗМЕРЕНИЙ», подготовленном известной международной компанией КЕМА:
    «…Для ясности необходимо дать правильное определение смарт измерениям и описать организацию инфраструктуры смарт измерений. Необходимо отметить, что между смарт счетчиком и смарт измерением существует большая разница. Смарт счетчик – это отдельный прибор, который установлен в доме потребителя и в основном измеряет потребление энергии потребителем. Смарт измерения – это фактическое применение смарт счетчиков в большем масштабе, то есть применение общего принципа вместо отдельного прибора. Однако, если рассматривать пилотные проекты смарт измерений или национальные программы смарт измерений, то иногда можно найти разницу в определении смарт измерений. Кроме того, также часто появляются такие термины, как автоматическое считывание счетчика (AMR) и передовая инфраструктура измерений (AMI), особенно в США, в то время как в ЕС часто используется достаточно туманный термин «интеллектуальные системы измерений …».
    Представляют интерес и высказывания В.В. Новикова, начальника лаборатории ФГУП ВНИИМС [1]: «…Это автоматизированные системы, которые обеспечивают и по-требителям, и сбытовым компаниям контроль и управление потреблением энергоресурсов согласно установленным критериям оптимизации энергосбережения. Такие измерения называют «интеллектуальными измерениями», или Smart Metering, как принято за рубежом …
    …Основные признаки Smart Metering у счетчиков электрической энергии. Их шесть:
    1. Новшества касаются в меньшей степени принципа измерений электрической энергии, а в большей – функциональных возможностей приборов.
    2. Дополнительными функциями выступают, как правило, измерение мощности за короткие периоды, коэффициента мощности, измерение времени, даты и длительности провалов и отсутствия питающего напряжения.
    3. Счетчики имеют самодиагностику и защиту от распространенных методов хищения электроэнергии, фиксируют в журнале событий моменты вскрытия кожуха, крышки клеммной колодки, воздействий сильного магнитного поля и других воздействий как на счетчик, его информационные входы и выходы, так и на саму электрическую сеть.
    4. Наличие функций для управления нагрузкой и подачи команд на включение и отключение электрических приборов.
    5. Более удобные и прозрачные функции для потребителей и энергоснабжающих организаций, позволяющие выбирать вид тарифа и энергосбытовую компанию в зависимости от потребностей в энергии и возможности ее своевременно оплачивать.
    6. Интеграция измерений и учета всех энергоресурсов в доме для выработки решений, минимизирующих расходы на оплату энергоресурсов. В эту стратегию вовлекаются как отдельные потребители, так и управляющие компании домами, энергоснабжающие и сетевые компании …».
    Из этих цитат нетрудно заметить, что первые 3 из 6 функций полностью повторяют требования к счетчикам АИИС КУЭ на оптовом рынке электроэнергии и мощности (ОРЭМ), которые не менялись с 2003 г. Функция № 5 является очевидной функцией счетчика при работе потребителя на розничных рынках электроэнергии (РРЭ) в условиях либеральной (рыночной) энергетики. Функция № 6 практически повторяет многочисленные определения понятия «умный дом», а функция № 4, провозглашенная в нашей стране, полностью соответствует желаниям сбытовых компаний найти наконец действенное средство воздействия на неплательщиков. При этом ясно, что неплатежи – не следствие отсутствия «умных счетчиков», а результат популистской политики правительства. Отключить физических (да и юридических) лиц невозможно, и эта функция счетчика, безусловно, останется невостребованной до внесения соответствующих изменений в нормативно-правовые акты.
    На функции № 4 следует остановиться особо. Она превращает измерительный прибор в управляющую систему, в АСУ, так как содержит все признаки такой системы: наличие измерительного компонента, решающего компонента (выдающего управляющие сигналы) и, в случае размещения коммутационных аппаратов внутри счетчика, органов управления. Причем явно или неявно, как и в любой системе управления, подразумевается обратная связь: заплатил – включат опять.
    Обоснованное мнение по поводу Smart Grid и Smart Metering высказал В.И. Гуревич в [2]. Приведем здесь цитаты из этой статьи с локальными ссылками на используемую литературу: «…Обратимся к истории. Впервые этот термин встретился в тексте статьи одного из западных специалистов в 1998 г. [1]. В названии статьи этот термин был впервые использован Массудом Амином и Брюсом Волленбергом в их публикации «К интеллектуальной сети» [2]. Первые применения этого термина на Западе были связаны с чисто рекламными названиями специальных контроллеров, предназначенных для управления режимом работы и синхронизации автономных ветрогенераторов (отличающихся нестабильным напряжением и частотой) с электрической сетью. Потом этот термин стал применяться, опять-таки как чисто рекламный ход, для обозначения микропроцессорных счетчиков электроэнергии, способных самостоятельно накапливать, обрабатывать, оценивать информацию и передавать ее по специальным каналам связи и даже через Интернет. Причем сами по себе контроллеры синхронизации ветрогенераторов и микропроцессорные счетчики электроэнергии были разработаны и выпускались различными фирмами еще до появления термина Smart Grid. Это название возникло намного позже как чисто рекламный трюк для привлечения покупателей и вначале использовалось лишь в этих областях техники. В последние годы его использование расширилось на системы сбора и обработки информации, мониторинга оборудования в электроэнергетике [3] …
    1. Janssen M. C. The Smart Grid Drivers. – PAC, June 2010, p. 77.
    2. Amin S. M., Wollenberg B. F. Toward a Smart Grid. – IEEE P&E Magazine, September/October, 2005.
    3. Gellings C. W. The Smart Grid. Enabling Energy Efficiency and Demand Response. – CRC Press, 2010. …».
    Таким образом, принимая во внимание столь различные мнения о предмете Smart Grid и Smart Metering, сетевая компания должна прежде всего определить понятие «интеллектуальная система измерения» для объекта измерений – электрической сети (как актива и технологической основы ОРЭМ и РРЭ) и представить ее предметную область именно для своего бизнеса.

    БИЗНЕС И «ИНТЕЛЛЕКТУАЛЬНЫЙ УЧЕТ»

    В результате изучения бизнес-процессов деятельности ряда сетевых компаний и взаимодействия на РРЭ сетевых, энергосбытовых компаний и исполнителей коммунальных услуг были сформулированы следующие исходные условия.
    1. В качестве главного признака новой интеллектуальной системы учета электроэнергии (ИСУЭ), отличающей ее от существующей системы коммерческого и технического учета электроэнергии, взято расширение функций, причем в систему вовлекаются принципиально новые функции: определение технических потерь, сведение балансов в режиме, близком к on-line, определение показателей надежности. Это позволит, среди прочего, получить необходимую информацию для решения режимных задач Smart Grid – оптимизации по реактивной мощности, управления качеством электроснабжения.
    2. Во многих случаях (помимо решения задач, традиционных для сетевой компании) рассматриваются устройства и системы управления потреблением у физических лиц, осуществляющие их ограничения и отключения за неплатежи (традиционные задачи так называемых систем AMI – Advanced Metering Infrastructure).
    Учитывая вышеизложенное, для электросетевой компании предлагается принимать следующее двойственное (по признаку предметной области) определение ИСУЭ:
    в отношении потребителей – физических лиц: «Интеллектуальная система измерений – это совокупность устройств управления нагрузкой, приборов учета, коммуникационного оборудования, каналов передачи данных, программного обеспечения, серверного оборудования, алгоритмов, квалифицированного персонала, которые обеспечивают достаточный объем информации и инструментов для управления потреблением электроэнергии согласно договорным обязательствам сторон с учетом установленных критериев энергоэффективности и надежности»;
    в отношении системы в целом: «Интеллектуальная система измерений – это автоматизированная комплексная система измерений электроэнергии (с возможностью измерений других энергоресурсов), определения учетных показателей и решения на их основе технологических и бизнес-задач, которая позволяет интегрировать различные информационные системы субъектов рынка и развиваться без ограничений в обозримом будущем».

    ЗАДАЧИ «ИНТЕЛЛЕКТУАЛЬНОГО УЧЕТА»

    Далее мы будем основываться на том, что ИСУЭ позволит осуществить следующие функции в бытовом секторе:
    • дистанционное получение от каждой точки измерения (узла учета) у бытового потребителя сведений об отпущенной или потребленной электроэнергии;
    • расчет внутриобъектового (многоквартирный жилой дом, поселок) баланса поступления и потребления энергоресурсов с целью выявления технических и коммерческих потерь и принятия мер по эффективному энергосбережению;
    • контроль параметров поставляемых энергоресурсов с целью обнаружения и регистрации их отклонений от договорных значений;
    • обнаружение фактов несанкционированного вмешательства в работу приборов учета или изменения схем подключения электроснабжения;
    • применение санкций против злостных неплательщиков методом ограничения потребляемой мощности или полного отключения энергоснабжения;
    • анализ технического состояния и отказов приборов учета;
    • подготовка отчетных документов об электропотреблении;
    • интеграция с биллинговыми системами.

    «ИНТЕЛЛЕКТУАЛЬНЫЙ КОММЕРЧЕСКИЙ УЧЕТ»

    Остановимся подробно на одном из атрибутов ИСУЭ, который считаю ключевым для основного электросетевого бизнеса.
    Особенностью коммерческого учета электроэнергии (КУЭ) распределительных сетевых компаний является наличие двух сфер коммерческого оборота электроэнергии – ОРЭМ и РРЭ, которые хотя и сближаются в нормативном и организационном плане, но остаются пока существенно различными с точки зрения требований к КУЭ.
    Большинство сетевых компаний является субъектом как ОРЭМ, так и РРЭ. Соответственно и сам коммерческий учет в отношении требований к нему разделен на два вида:
    • коммерческий учет на ОРЭМ (технические средства – АИИС КУЭ);
    • коммерческий учет на РРЭ (технические средства – АСКУЭ).
    Кроме того, к коммерческому учету, т.е. к определению тех показателей, которые служат для начисления обязательств и требований сетевой компании (оплата услуг по транспорту электроэнергии, купля-продажа технологических потерь), следует отнести и измерения величин, необходимых для определения показателей надежности сети в отношении оказания услуг по передаче электроэнергии.
    Отметим, что сложившиеся технологии АИИС КУЭ и АСКУЭ по своей функциональной полноте (за исключением функции коммутации нагрузки внутри систем) – это технологии Smart Metering в том понимании, которое мы обсуждали выше. Поэтому далее будем считать эти понятия полностью совпадающими.
    Подсистема ИСУЭ на РРЭ, безусловно, самая сложная и трудоемкая часть всей интеллектуальной системы как с точки зрения организации сбора информации (включая измерительные системы (ИС) и средства связи в автоматизированных системах), так и с точки зрения объема точек поставки и соответственно средств измерений. Последние отличаются большим многообразием и сложностью контроля их и метрологических характеристик (МХ).
    Если технические требования к ИС на ОРЭМ и к ИС крупных потребителей (по крайней мере потребителей с присоединенной мощностью свыше 750 кВА) принципиально близки, то в отношении нормативного и организационного компонентов имеются сильные различия. Гармоничная их интеграция в среде разных компонентов – основная задача создания современной системы ИСУЭ любой сетевой компании.
    Особенностью коммерческого учета для нужд сетевого комплекса – основного бизнеса компании в отличие от учета электроэнергии потребителей, генерирующих источников и сбытовых компаний – является сам характер учетных показателей, вернее, одного из них – технологических потерь электроэнергии. Здесь трудность состоит в том, что границы балансовой принадлежности компании должны оснащаться средствами учета в интересах субъектов рынка – участников обращения электроэнергии, и по правилам, установленным для них, будь то ОРЭМ или РРЭ. А к измерению и учету важнейшего собственного учетного показателя, потерь, отдельные нормативные требования не предъявляются, хотя указанные показатели должны определяться по своим технологиям.
    При этом сегодня для эффективного ведения бизнеса перед сетевыми компаниями, по мнению автора, стоит задача корректного определения часовых балансов в режиме, близком к on-line, в условиях, когда часть счетчиков (со стороны ОРЭМ) имеют автоматические часовые измерения электроэнергии, а подавляющее большинство (по количеству) счетчиков на РРЭ (за счет физических лиц и мелкомоторных потребителей) не позволяют получать такие измерения. Актуальность корректного определения фактических потерь следует из необходимости покупки их объема, не учтенного при установлении тарифов на услуги по передаче электроэнергии, а также предоставления информации для решения задач Smart Grid.
    В то же время специалистами-практиками часто ставится под сомнение практическая востребованность определения технологических потерь и их составляющих в режиме on-line. Учитывая это мнение, которое не согласуется с разрабатываемыми стратегиями Smart Grid, целесообразно оставить окончательное решение при разработке ИСУЭ за самой компанией.
    Cистемы АИИС КУЭ сетевых компаний никогда не создавались целенаправленно для решения самых насущных для них задач, таких как:
    1. Коммерческая задача купли-продажи потерь – качественного (прозрачного и корректного в смысле метрологии и требований действующих нормативных документов) инструментального или расчетно-инструментального определения технологических потерь электроэнергии вместе с их составляющими – техническими потерями и потреблением на собственные и хозяйственные нужды сети.
    2. Коммерческая задача по определению показателей надежности электроснабжения потребителей.
    3. Управленческая задача – получение всех установленных учетной политикой компании балансов электроэнергии и мощности по уровням напряжения, по филиалам, по от-дельным подстанциям и группам сетевых элементов, а также КПЭ, связанных с оборотом электроэнергии и оказанием услуг в натуральном выражении.
    Не ставилась и задача технологического обеспечения возможного в перспективе бизнеса сетевых компаний – предоставления услуг оператора коммерческого учета (ОКУ) субъектам ОРЭМ и РРЭ на территории обслуживания компании.
    Кроме того, необходимо упорядочить систему учета для определения коммерческих показателей в отношении определения обязательств и требований оплаты услуг по транспорту электроэнергии и гармонизировать собственные интересы и интересы смежных субъектов ОРЭМ и РРЭ в рамках существующей системы взаимодействий и возможной системы взаимодействий с введением института ОКУ.
    Именно исходя из этих целей (не забывая при этом про коммерческие учетные показатели смежных субъектов рынка в той мере, какая требуется по обязательствам компании), и нужно строить подлинно интеллектуальную измерительную систему. Иными словами, интеллект измерений – это главным образом интеллект решения технологических задач, необходимых компании.
    По сути, при решении нового круга задач в целевой модели интеллектуального учета будет реализован принцип придания сетевой компании статуса (функций) ОКУ в зоне обслуживания. Этот статус формально прописан в действующей редакции Правил розничных рынков (Постановление Правительства РФ № 530 от 31.08.2006), однако на практике не осуществляется в полном объеме как из-за отсутствия необходимой технологической базы, так и из-за организационных трудностей.
    Таким образом, сетевая компания должна сводить баланс по своей территории на новой качественной ступени – оперативно, прозрачно и полно. А это означает сбор информации от всех присоединенных к сети субъектов рынка, формирование учетных показателей и передачу их тем же субъектам для определения взаимных обязательств и требований.
    Такой подход предполагает не только новую схему расстановки приборов в соответствии с комплексным решением всех поставленных технологами задач, но и новые функциональные и метрологические требования к измерительным приборам.

    ПРЕИМУЩЕСТВА ИСУЭ

    Внедрение ИСУЭ даст новые широкие возможности для всех участников ОРЭМ и РРЭ в зоне обслуживания электросетевой компании.
    Для самой компании:
    1. Повышение эффективности существующего бизнеса.
    2. Возможности новых видов бизнеса – ОКУ, регистратор единой группы точек поставки (ГТП), оператор заправки электрического транспорта и т.п.
    3. Обеспечение внедрения технологий Smart grid.
    4. Создание и развитие программно-аппаратного комплекса (с сервисно-ориентированной архитектурой) и ИС, снимающих ограничения на развитие технологий и бизнеса в долгосрочной перспективе.
    Для энергосбытовой деятельности:
    1. Автоматический мониторинг потребления.
    2. Легкое определение превышения фактических показателей над планируемыми.
    3. Определение неэффективных производств и процессов.
    4. Биллинг.
    5. Мониторинг коэффициента мощности.
    6. Мониторинг показателей качества (напряжение и частота).
    Для обеспечения бизнеса – услуги для генерирующих, сетевых, сбытовых компаний и потребителей:
    1. Готовый вариант на все случаи жизни.
    2. Надежность.
    3. Гарантия качества услуг.
    4. Оптимальная и прозрачная стоимость услуг сетевой компании.
    5. Постоянное внедрение инноваций.
    6. Повышение «интеллекта» при работе на ОРЭМ и РРЭ.
    7. Облегчение технологического присоединения энергопринимающих устройств субъектов ОРЭМ и РРЭ.
    8. Качественный консалтинг по всем вопросам электроснабжения и энергосбережения.
    Успешная реализации перечисленных задач возможна только на базе информационно-технологической системы (программно-аппаратного комплекса) наивысшего достигнутого на сегодняшний день уровня интеграции со всеми возможными информационными системами субъектов рынка – измерительно-учетными как в отношении электроэнергии, так и (в перспективе) в отношении других энергоресурсов.

    ЛИТЕРАТУРА

    1. Новиков В.В. Интеллектуальные измерения на службе энергосбережения // Энергоэксперт. 2011. № 3.
    2. Гуревич В.И. Интеллектуальные сети: новые перспективы или новые проблемы? // Электротехнический рынок. 2010. № 6.

    [ http://www.news.elteh.ru/arh/2011/71/14.php]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > smart metering

  • 7 modular data center

    1. модульный центр обработки данных (ЦОД)

     

    модульный центр обработки данных (ЦОД)
    -
    [Интент]

    Параллельные тексты EN-RU

    [ http://loosebolts.wordpress.com/2008/12/02/our-vision-for-generation-4-modular-data-centers-one-way-of-getting-it-just-right/]

    [ http://dcnt.ru/?p=9299#more-9299]

    Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.

    В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.

    At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.

    В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.

    Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.

    Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.

    Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.

    Was there a key driver for the Generation 4 Data Center?

    Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
    Был ли ключевой стимул для разработки дата-центра четвертого поколения?


    If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.

    Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.

    One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:

    The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.

    Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:

    Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.

    The second worst thing we can do in delivering facilities for the business is to have too much capacity online.

    А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.

    This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
    So let’s take a high level look at our Generation 4 design

    Это заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
    Давайте рассмотрим наш проект дата-центра четвертого поколения

    Are you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.

    It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.

    From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.


    Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:

    Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.

    С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.

    Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.


    Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.

    For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.

    Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.

    Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.

    Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.

    Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.

    Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
    Мы все подвергаем сомнению

    In our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.

    В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
    Серийное производство дата центров


    In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.

    Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
    Невероятно энергоэффективный ЦОД


    And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?

    А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
    Строительство дата центров без чиллеров

    We have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.

    Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.

    By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.

    Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.

    Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.

    Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
    Gen 4 – это стандартная платформа

    Finally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.

    Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
    Главные характеристики дата-центров четвертого поколения Gen4

    To summarize, the key characteristics of our Generation 4 data centers are:

    Scalable
    Plug-and-play spine infrastructure
    Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
    Rapid deployment
    De-mountable
    Reduce TTM
    Reduced construction
    Sustainable measures

    Ниже приведены главные характеристики дата-центров четвертого поколения Gen 4:

    Расширяемость;
    Готовая к использованию базовая инфраструктура;
    Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
    Быстрота развертывания;
    Возможность демонтажа;
    Снижение времени вывода на рынок (TTM);
    Сокращение сроков строительства;
    Экологичность;

    Map applications to DC Class

    We hope you join us on this incredible journey of change and innovation!

    Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.


    Использование систем электропитания постоянного тока.

    Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!

    На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.

    So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.

    Generations of Evolution – some background on our data center designs

    Так что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
    Поколения эволюции – история развития наших дата-центров

    We thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.

    Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.

    It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.

    Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.

    We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.

    Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.

    No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.

    Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.

    As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.

    Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.

    This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.

    Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.


    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > modular data center

  • 8 technological mode

    1. технологический способ

     

    технологический способ
    Общее понятие, объединяющее два: Т.с. производства (производственный способ, технология) и Т.с. потребления; совокупность основных характеристик (ингредиентов) процесса производства (соответственно — потребления) того или иного продукта. В экономико-математической модели Т.с., или технология (activity), описывается системой присущих ему чисел (вектором) - например, нормами затрат и выпуска различных ресурсов в единицу времени или в расчете на единицу продукции и т.п., в том числе коэффициентами материалоемкости, трудоемкости, фондоемкости, капиталоемкости. Например, если x = (xi) — вектор затрат ресурсов (перечисленных под номерами i), а y = (yj) - вектор объемов производства продуктов (соответственно, перечисленных под номерами j), то технологиями, технологическими процессами, способами производства можно назвать пары векторов (xy). Технологическая допустимость означает здесь возможность получить из затрачиваемых (используемых) ингредиентов вектора x вектор продукции y. Совокупность всевозможных допустимых технологий (XY) образует технологическое или производственное множество данной экономической системы. Элементарный Т.с. (например, характеризующий производство единицы продукции или, наоборот, использование единицы ресурса) служит как бы атомом, исходным пунктом при моделировании экономических процессов. Кратность использования способа называется интенсивностью. Она может измеряться объемом какого-либо выпускаемого продукта, какого-либо затрачиваемого ресурса и т.д. Если важен территориальный фактор, Т.с. различаются также по признаку размещения производства, т.е. если два производства одинаковы по всем характеристикам, кроме местоположения, для модели — это разные Т.с. (между которыми надо сделать выбор). В линейных моделях Т.с. характеризует определенные пропорции между различными затрачиваемыми ресурсами и выпускаемыми продуктами. Способы могут быть взаимозаменяемыми (тогда выбор между ними становится предметом оптимизации) и невзаимозаменяемыми. Как правило, в реальном производстве одновременно в том или ином сочетании может применяться несколько Т.с. — это называется свойством аддитивности. При этом если характеристики (коэффициенты) одного способа не зависят от применения других — способ обладает свойством автономности. В силу свойств аддитивности и автономности выпуклые комбинации технологических способов образуют новые технологические способы. В ряде экономико-математических работ встречается в том же значении термин «способ производства» — однако все более редко, очевидно, из-за его совпадения с известным термином политической экономии.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > technological mode

  • 9 alarm management

    1. управление аварийными сигналами

     

    управление аварийными сигналами
    -
    [Интент]


    Переход от аналоговых систем к цифровым привел к широкому, иногда бесконтрольному использованию аварийных сигналов. Текущая программа снижения количества нежелательных аварийных сигналов, контроля, определения приоритетности и адекватного реагирования на такие сигналы будет способствовать надежной и эффективной работе предприятия.

    Если технология хороша, то, казалось бы, чем шире она применяется, тем лучше. Разве не так? Как раз нет. Больше не всегда означает лучше. Наступление эпохи микропроцессоров и широкое распространение современных распределенных систем управления (DCS) упростило подачу сигналов тревоги при любом сбое технологического процесса, поскольку затраты на это невелики или равны нулю. В результате в настоящее время на большинстве предприятий имеются системы, подающие ежедневно огромное количество аварийных сигналов и уведомлений, что мешает работе, а иногда приводит к катастрофическим ситуациям.

    „Всем известно, насколько важной является система управления аварийными сигналами. Но, несмотря на это, на производстве такие системы управления внедряются достаточно редко", - отмечает Тодд Стауффер, руководитель отдела маркетинга PCS7 в компании Siemens Energy & Automation. Однако события последних лет, среди которых взрыв на нефтеперегонном заводе BP в Техасе в марте 2005 г., в результате которого погибло 15 и получило травмы 170 человек, могут изменить отношение к данной проблеме. В отчете об этом событии говорится, что аварийные сигналы не всегда были технически обоснованы.

    Широкое распространение компьютеризированного оборудования и распределенных систем управления сделало более простым и быстрым формирование аварийных сигналов. Согласно новым принципам аварийные сигналы следует формировать только тогда, когда необходимы ответные действия оператора. (С разрешения Siemens Energy & Automation)

    Этот и другие подобные инциденты побудили специалистов многих предприятий пересмотреть программы управления аварийными сигналами. Специалисты пытаются найти причины непомерного роста числа аварийных сигналов, изучить и применить передовой опыт и содействовать разработке стандартов. Все это подталкивает многие компании к оценке и внедрению эталонных стандартов, таких, например, как Publication 191 Ассоциации пользователей средств разработки и материалов (EEMUA) „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке", которую многие называют фактическим стандартом систем управления аварийными сигналами. Тим Дональдсон, директор по маркетингу компании Iconics, отмечает: „Распределение и частота/колебания аварийных сигналов, взаимная корреляция, время реакции и изменения в действиях оператора в течение определенного интервала времени являются основными показателями отчетов, которые входят в стандарт EEMUA и обеспечивают полезную информацию для улучшения работы предприятия”. Помимо этого как конечные пользователи, так и поставщики поддерживают развитие таких стандартов, как SP-18.02 ISA «Управление системами аварийной сигнализации для обрабатывающих отраслей промышленности». (см. сопроводительный раздел „Стандарты, эталоны, передовой опыт" для получения более подробных сведений).

    Предполагается, что одной из причин взрыва на нефтеперегонном заводе BP в Техасе в 2005 г., в результате которого погибло 15 и получило ранения 170 человек, а также был нанесен значительный ущерб имуществу, стала неэффективная система аварийных сигналов.(Источник: Комиссия по химической безопасности и расследованию аварий США)

    На большинстве предприятий системы аварийной сигнализации очень часто имеют слишком большое количество аварийных сигналов. Это в высшей степени нецелесообразно. Показатели EEMUA являются эталонными. Они содержатся в Publication 191 (1999), „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке".

    Начало работы

    Наиболее важным представляется вопрос: почему так велико количество аварийных сигналов? Стауффер объясняет это следующим образом: „В эпоху аналоговых систем аварийные сигналы реализовывались аппаратно. Они должны были соответствующим образом разрабатываться и устанавливаться. Каждый аварийный сигнал имел реальную стоимость - примерно 1000 долл. США. Поэтому они выполнялись тщательно. С развитием современных DCS аварийные сигналы практически ничего не стоят, в связи с чем на предприятиях стремятся устанавливать все возможные сигналы".

    Характеристики «хорошего» аварийного сообщения

    В число базовых требований к аварийному сообщению, включенных в аттестационный документ EEMUA, входит ясное, непротиворечивое представление информации. На каждом экране дисплея:

    • Должно быть четко определено возникшее состояние;

    • Следует использовать терминологию, понятную для оператора;

    • Должна применяться непротиворечивая система сокращений, основанная на стандартном словаре сокращений для данной отрасли производства;

    • Следует использовать согласованную структуру сообщения;

    • Система не должна строиться только на основе теговых обозначений и номеров;

    • Следует проверить удобство работы на реальном производстве.

    Информация из Publication 191 (1999) EEMUA „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке".

    Качественная система управления аварийными сигналами должна опираться на руководящий документ. В стандарте ISA SP-18.02 «Управление системами аварийной сигнализации для обрабатывающих отраслей промышленности», предложен целостный подход, основанный на модели жизненного цикла, которая включает в себя определяющие принципы, обучение, контроль и аудит.

    Именно поэтому операторы сегодня часто сталкиваются с проблемой резкого роста аварийных сигналов. В соответствии с рекомендациями Publication 191 EEMUA средняя частота аварийных сигналов не должна превышать одного сигнала за 10 минут, или не более 144 сигналов в день. В большинстве отраслей промышленности показатели значительно выше и находятся в диапазоне 5-9 сигналов за 10 минут (см. таблицу Эталонные показатели для аварийных сигналов). Дэвид Гэртнер, руководитель служб управления аварийными сигналами в компании Invensys Process Systems, вспоминает, что при запуске производственной установки пяти операторам за полгода поступило 5 миллионов сигналов тревоги. „От одного из устройств было получено 550 000 аварийных сигналов. Устройство работает на протяжении многих месяцев, и до сих пор никто не решился отключить его”.

    Практика прошлых лет заключалась в том, чтобы использовать любые аварийные сигналы независимо от того - нужны они или нет. Однако в последнее время при конфигурировании систем аварийных сигналов исходят из необходимости ответных действий со стороны оператора. Этот принцип, который отражает фундаментальные изменения в разработке систем и взаимодействии операторов, стал основой проекта стандарта SP18 ISA. В этом документе дается следующее определение аварийного сигнала: „звуковой и/или визуальный способ привлечения внимания, указывающий оператору на неисправность оборудования, отклонения в технологическом процессе или аномальные условия эксплуатации, которые требуют реагирования”. При такой практике сигнал конфигурируется только в том случае, когда на него необходим ответ оператора.

    Адекватная реакция

    Особенно важно учитывать следующую рекомендацию: „Не следует ничего предпринимать в отношении событий, для которых нет измерительного инструмента (обычно программного)”.Высказывания Ника Сэнд-за, сопредседателя комитета по разработке стандартов для систем управления аварийными сигналами SP-18.00.02 Общества ISA и менеджера технологий управления процессами химического производства DuPont, подчеркивают необходимость контроля: „Система контроля должна сообщать - в каком состоянии находятся аварийные сигналы. По каким аварийным сигналам проводится техническое обслуживание? Сколько сигналов имеет самый высокий приоритет? Какие из них относятся к системе безопасности? Она также должна сообщать об эффективности работы системы. Соответствует ли ее работа вашим целям и основополагающим принципам?"

    Кейт Джоунз, старший менеджер по системам визуализации в Wonderware, добавляет: „Во многих отраслях промышленности, например в фармацевтике и в пищевой промышленности, уже сегодня требуется ведение баз данных по материалам и ингредиентам. Эта информация может также оказаться полезной при анализе аварийных сигналов. Мы можем установить комплект оборудования, работающего в реальном времени. Оно помогает определить место, где возникла проблема, с которой связан аварийный сигнал. Например, можно создать простые гистограммы частот аварийных сигналов. Можно сформировать отчеты об аварийных сигналах в соответствии с разными уровнями системы контроля, которая предоставляет сведения как для менеджеров, так и для исполнителей”.

    Представитель компании Invensys Гэртнер утверждает, что двумя основными элементами каждой программы управления аварийными сигналами должны быть: „хороший аналитический инструмент, с помощью которого можно определить устройства, подающие наибольшее количество аварийных сигналов, и эффективный технологический процесс, позволяющий объединить усилия персонала и технические средства для устранения неисправностей. Инструментарий помогает выявить источник проблемы. С его помощью можно определить наиболее частые сигналы, а также ложные и отвлекающие сигналы. Таким образом, мы можем выяснить, где и когда возникают аварийные сигналы, можем провести анализ основных причин и выяснить, почему происходит резкое увеличение сигналов, а также установить для них новые приоритеты. На многих предприятиях высокий приоритет установлен для всех аварийных сигналов. Это неприемлемое решение. Наиболее разумным способом распределения приоритетности является следующий: 5 % аварийных сигналов имеют приоритет № 1, 15% приоритет № 2, и 80% приоритет № 3. В этом случае оператор может отреагировать на те сигналы, которые действительно важны”.

    И, тем не менее, Марк МакТэвиш, руководитель группы решений в области управления аварийными сигналами и международных курсов обучения в компании Matrikon, отмечает: „Необходимо помнить, что программное обеспечение - это всего лишь инструмент, оно само по себе не является решением. Аварийные сигналы должны представлять собой исключительные случаи, которые указывают на события, выходящие за приемлемые рамки. Удачные программы управления аварийными сигналами позволяют добиться внедрения на производстве именно такого подхода. Они помогают инженерам изо дня в день управлять своими установками, обеспечивая надежный контроль качества и повышение производительности за счет снижения незапланированных простоев”.

    Система, нацеленная на оператора

    Тем не менее, даже наличия хорошей системы сигнализации и механизма контроля и анализа ее функционирования еще недостаточно. Необходимо следовать основополагающим принципам, руководящему документу, который должен стать фундаментом для всей системы аварийной сигнализации в целом, подчеркивает Сэндз, сопредседатель ISA SP18. При разработке стандарта „основное внимание мы уделяем не только рационализации аварийных сигналов, - говорит он, - но и жизненному циклу систем управления аварийными сигналами в целом, включая обучение, внесение изменений, совершенствование и периодический контроль на производственном участке. Мы стремимся использовать целостный подход к системе управления аварийными сигналами, построенной в соответствии с ISA 84.00.01, Функциональная безопасность: Системы безопасности с измерительной аппаратурой для сектора обрабатывающей промышленности». (см. диаграмму Модель жизненного цикла системы управления аварийными сигналами)”.

    «В данном подходе учитывается участие оператора. Многие недооценивают роль оператора,- отмечает МакТэвиш из Matrikon. - Система управления аварийными сигналами строится вокруг оператора. Инженерам трудно понять проблемы оператора, если они не побывают на его месте и не получат опыт управления аварийными сигналами. Они считают, что знают потребности оператора, но зачастую оказывается, что это не так”.

    Удобное отображение информации с помощью человеко-машинного интерфейса является наиболее существенным аспектом системы управления аварийными сигналами. Джонс из Wonderware говорит: „Аварийные сигналы перед поступлением к оператору должны быть отфильтрованы так, чтобы до оператора дошли нужные сообщения. Программное обеспечение предоставляет инструментарий для удобной конфигурации этих параметров, но также важны согласованность и подтверждение ответных действий”.

    Аварийный сигнал должен сообщать о том, что необходимо сделать. Например, как отмечает Стауффер из Siemens: „Когда специалист по автоматизации настраивает конфигурацию системы, он может задать обозначение для физического устройства в соответствии с системой идентификационных или контурных тегов ISA. При этом обозначение аварийного сигнала может выглядеть как LIC-120. Но оператору информацию представляют в другом виде. Для него это 'регулятор уровня для резервуара XYZ'. Если в сообщении оператору указываются неверные сведения, то могут возникнуть проблемы. Оператор, а не специалист по автоматизации является адресатом. Он - единственный, кто реагирует на сигналы. Сообщение должно быть сразу же абсолютно понятным для него!"

    Эдди Хабиби, основатель и главный исполнительный директор PAS, отмечает: „Эффективность деятельности оператора, которая существенно влияет на надежность и рентабельность предприятия, выходит за рамки совершенствования системы управления аварийными сигналами. Инвестиции в операторов являются такими же важными, как инвестиции в современные системы управления технологическим процессом. Нельзя добиться эффективности работы операторов без учета человеческого фактора. Компетентный оператор хорошо знает технологический процесс, имеет прекрасные навыки общения и обращения с людьми и всегда находится в состоянии готовности в отношении всех событий системы аварийных сигналов”. „До возникновения DCS, -продолжает он, - перед оператором находилась схема технологического процесса, на которой были указаны все трубопроводы и измерительное оборудование. С переходом на управление с помощью ЭВМ сотни схем трубопроводов и контрольно-измерительных приборов были занесены в компьютерные системы. При этом не подумали об интерфейсе оператора. Когда произошел переход от аналоговых систем и физических схем панели управления к цифровым системам с экранными интерфейсами, оператор утратил целостную картину происходящего”.

    «Оператору также требуется иметь необходимое образование в области технологических процессов, - подчеркивает Хабиби. - Мы часто недооцениваем роль обучения. Каковы принципы работы насоса или компрессора? Летчик гражданской авиации проходит бесчисленные часы подготовки. Он должен быть достаточно подготовленным перед тем, как ему разрешат взять на себя ответственность за многие жизни. В руках оператора химического производства возможно лежит не меньшее, если не большее количество жизней, но его подготовка обычно ограничивается двухмесячными курсами, а потом он учится на рабочем месте. Необходимо больше внимания уделять повышению квалификации операторов производства”.

    Рентабельность

    Эффективная система управления аварийными сигналами стоит времени и денег. Однако и неэффективная система также стоит денег и времени, но приводит к снижению производительности и повышению риска для человеческой жизни. Хотя создание новой программы управления аварийными сигналами или пересмотр и реконструкция старой может обескуражить кого угодно, существует масса информации по способам реализации и достижения целей системы управления аварийными сигналами.

    Наиболее важным является именно определение цели и способов ее достижения. МакТэвиш говорит, что система должна выдавать своевременные аварийные сигналы, которые не дублируют друг друга, адекватно отражают ситуацию, помогают оператору диагностировать проблему и определять эффективное направление действий. „Целью является поддержание производства в безопасном, надежном рабочем состоянии, которое позволяет выпускать качественный продукт. В конечном итоге целью является финансовая прибыль. Если на предприятии не удается достичь этих целей, то его существование находится под вопросом.

    Управление аварийными сигналами - это процесс, а не схема, - подводит итог Гэртнер из Invensys. - Это то же самое, что и производственная безопасность. Это - постоянный процесс, он никогда не заканчивается. Мы уже осознали высокую стоимость низкой эффективности и руководители предприятий больше не хотят за нее расплачиваться”.

    Автор: Джини Катцель, Control Engineering

    [ http://controlengrussia.com/artykul/article/hmi-upravlenie-avariinymi-signalami/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > alarm management

  • 10 MORTGAGE

    (ипотека; закладная; ипотечный кредит) Право притязания на собственность, появившееся в результате гарантии/залога под заем или выплату долга, которое утрачивает силу по выплате этого займа или долга. Получатель ссуды, предлагающий этот залог, называется должник по закладной (mortgagor); тот, кто дает деньги, называется кредитор по ипотечному кредиту; залогодержатель (mortgagee). При покупке домов обычно в качестве кредиторов по ипотечному кредиту выступают строительные общества (building societies) и банки, а также другие организации. Ипотека, как правило, выплачивается ежемесячными взносами в течение 25 лет. Выплаты могут осуществляться в форме возмещения капитала и выплаты процента-погашаемая ипотека/закладная ( repayment mortgage), или в форме выплаты только процента. В последнем случае оговаривается возмещение капитала другим способом, например путем использования накопительного полиса страхования жизни (endowment assurance policy) (что называется ипотека/закладная под накопления-endowment mortgage) или пенсионного полиса-ипотека/закладная под пенсионные накопления (pension mortgage). Использование ипотеки в бизнесе включает залог имущества под заем для открытия дела. Заложенным может быть практически любое имущество ( хотя наиболее часто закладывается земля). В соответствии с Законом о собственности 1925 г., который регулирует операции с ипотекой в Великобритании, имеется два типа ипотеки/ залога: основывающийся на законном залоговом праве и основывающийся на справедливом залоговом праве. Ипотека, основывающаяся на законном залоговом праве (legal mortgage), признает вещно-правовой интерес залогодержателя:имеющими силу могут быть только два вида ипотеки:

    (а) аренда, предоставленная на определенное число лет, которая прекращается по выплате долга по истечении или до истечения оговоренного срока;

    (б) сделка, которая оформлена как залог ( charge) с использованием ипотеки, основывающейся на законном залоговом праве. Ипотека, основывающаяся на справедливом залоговом праве (equitable mortgage), возникает, когда залогодержатель имеет только справедливые имущественные претензии на собственность (например, он является бенефициаром/получателем доходов от распоряжения имуществом). Если при этом оформлен документ с подписями и печатью, договор ( deed), права сторон очень близки к тем, которые они имеют в случае ипотеки, основывающейся на законном залоговом праве. “Справедливая” ипотека может также возникнуть из признаваемого правом или справедливого интереса, вытекающего из неформального соглашения, например, когда должник по закладной передает свои документы, подтверждающие право на имущество, кредитору в качестве залога под заем. Правовой защитой такого залогодержателя являются только возможности владения и лишения права выкупа заложенного имущества (см. ниже). Та же самая собственность может быть заложена во вторичную (second mortgage) или последующую ипотеку, но при условии, что стоимость собственности превышает стоимость предыдущей ипотеки (ипотек). Все ипотеки зарегистрированного земельного участка заносятся в регистр залогов (register of charges) на основе заявления залогодержателя, которому выдается сертификат о залоге, Если заложенная земля не зарегистрирована, документ, удостоверяющий право собственности на нее, находится у первого юридического залогодержателя. Последующие юридические залогодержатели и любые залогодержатели по справедливости, не имеющие документа, удостоверяющего права собственности, должны соблюдать свои интересы путем регистрации. Если заложенная собственность является основным местом жительства должника по закладной, он может получить процентную льготу по ипотеке (mortgage interest relief)-налоговую скидку при выплате подоходного налога со стоимости процента, уплачиваемого по ипотеке, ограниченную определенным размером (в настоящее время-30 000 ф. ст.). Для закладных, оформленных после 1 августа 1988 г., предел льготы по ипотеке относится не к заемщику, а к собственности. Так, когда в одном месте проживает два или более человек, льгота поровну делится между ними. Прежде каждый из них (за исключением случаев семейных пар) получал полную льготу. В соответствии с процентной льготой по ипотеке у источника налогообложения (mortgage interest relief at source) выплаты процентов, которые делаются банку, строительному обществу и т.д., делаются после вычета из них суммы, равной скидке с подлежащего обложению подоходного налога по базовой ставке. Поэтому отпадает необходимость в каких-либо других льготах, если только лицо, выплачивающее ипотеку, не платит налог по более высокой ставке. Согласно праву выкупа заложенного имущества (equity of redemption), должник по закладной может выкупить свою собственность в любое время, когда он выплатит заем, а также проценты и издержки. Любые положения в договоре об ипотеке, которые могут помешать выкупу закладной (и которые называются препятствия (clogs)) незаконны. Теоретически залогодержатель всегда имеет право завладеть заложенной собственностью, даже в том случае, если невыполнение обязательств не имело места. Это право обычно исключается в ипотеках строительных обществ до невыполнения обязательств, и такое исключение может применяться в случае любой ипотеки/закладной, выплачиваемой путем периодических взносов. В том случае, когда речь идет о собственности-жилище, суд имеет право отложить возмещение собственности, если существует реальная возможность того, что невыполнение обязательств будет урегулировано в разумные сроки. В случае, если обязательства не будут выполнены, должник по закладной имеет законное право продать собственность/имущество, но обычно это можно сделать только после вступления во владение ею. Любые суммы, оставшиеся после покрытия долга и затрат залогодержателя, должны быть выплачены должнику по закладной. Залогодержатель также имеет законное право назначить ликвидатора (receiver), чтобы распорядиться в случае невыполнения обязательств заложенной собственностью. Это право особенно уместно там, где речь идет о предпринимательской собственности. В качестве последнего средства для завершения ипотеки используется лишение права выкупа заложенного имущества (foreclosure), когда суд принимает решение о передаче собственности залогодержателю. Во время увеличивающихся цен на собственность такое случается редко, поскольку в этом случае должник по закладной теряет больше, чем стоимость долга, поэтому в тех случаях, где более приемлемым решением является продажа, суд не примет решения о лишении права выкупа. Однако, если цены на собственность падают, должник по ипотечному залогу может стать обладателем отрицательной маржи-отрицательной разницы между рыночной стоимостью залога и размером полученной под него ссуды (negative eguity), и в этом случае суд должен принять решение о лишении права выкупа заложенного имущества. См. также: amortizing mortgage (“амортизационная”; погашаемая ипотека/закладная); baloon mortgage (ипотека/закладная “воздушный шар”); PEP mortgage (ипотека Программы личных капиталовложений в британские компании); securitized mortgage( секьюритизированная ипотека).

    Финансы: англо-русский толковый словарь > MORTGAGE

  • 11 release letter

    Письмо, посланное главой синдиката другим его членам, с описанием окончательных подробностей предложения о размещении ценных бумаг: о том, будет или не будет применяться реклама, об использовании депозита "доброй воли", об условиях участия и о том, как проводить поставку сертификатов во время распределения выпуска. Синоним терминов release-term letter (письмо об условиях выпуска в продажу), syndicate account letter (письмо о счете синдиката)

    Англо-русский словарь по инвестициям > release letter

  • 12 fiber optic cable

    1. волоконно-оптический кабель

     

    волоконно-оптический кабель
    Кабель, содержащий одно или несколько оптических волокон и предназначенный для передачи данных. 
    [ http://www.lexikon.ru/dict/net/index.html]

    волоконно-оптический кабель
    -
    [Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание - М.: РУССО, 1995 - 616 с.]

    оптический кабель
    Кабельное изделие, содержащее одно или несколько оптических волокон, объединенных в единую конструкцию, обеспечивающую их работоспособность в заданных условиях эксплуатации.
    Примечание. При необходимости оптический кабель может содержать также токопроводящие жилы.
    [ ГОСТ 26599-85]

    КЛАССИФИКАЦИЯ

    По назначению все кабели можно разделить на три категории:

    • внутренней прокладки (indoor);
    • наружной прокладки (outdoor);
    • специальные.

    Кабели внутренней или внутреобъектовой прокладки. используются внутри телефонных станций, офисов, зданий и помещений клиентов/абонентов. По условию прокладки эти кабели в свою очередь можно разделить на:

    • кабели вертикальной прокладки (riser cable);
    • кабели городской прокладки (distribution cable);
    • шнуры коммутации (patch cord).

    Кабели наружной прокладки могут применяться практически на любых линиях связи;

    • воздушные (aerial);
    • подземные (buried);
    • подводные (undersea, underwater).

    Кабели воздушной подвески подвешиваются на опорах различного типа и, в свою очередь, делятся на кабели:

    • самонесущие (self-supporting, например, типа ADSS – All-Dielectric Self-supporting;
    • полностью диэлектрические самонесущие;
    • с несущим тросом или без него, подвешиваемые на опорах различного типа, в том числе на опорах ЛЭП и контактной сети железных дорог;
    • прикрепляемые (lashed, например, типа ADL – полностью диэлектрические прикрепляемые), которые крепятся к несущему проводу с помощью диэлектрических шнуров или ленты, или же с помощью специальных зажимов, или спиралевидных отрезков металлической проволоки;
    • навиваемые (wrapped, например, типа SkyWrap компании Focas) – навиваются вокруг несущего, например, фазового провода или провода заземления (грозотроса);
    • встраиваемые в грозотрос (типа ORGW – Optical ground Wire – ОКГТ – оптический кабель в грозотросе).

    Кабели подземной прокладки в свою очередь делятся на:

    • кабели, прокладываемые в кабельной канализации и туннелях;
    • кабели, закапываемые в грунт;
    • кабели, автоматической прокладки (АП) в специальных трубах (например, трубах типа Silikor – ПЭ трубы компании Dura-Line).

    Подводные кабели имеют следующие разновидности:

    • кабели, укладываемые на дно несудоходных рек, неглубоких озёр и болот (используются при прохождении водных преград небольшой длины);
    • кабели, укладываемые на дно морей и океанов (что может означать не только укладку на дно, но и закрепление на определённой глубине, или закапывание в донный грунт на определённую глубину).

    К специальным кабелям относят следующие:

    • одноволоконные полностью диэлектрические (ПД) кабели в тонкой специальной оболочке для использования в сети внутренней коммутации различных спецустройств и приборов;
    • многоволоконные плоские (ПД) кабели, используемые для внутренних шин и компьютерных сетей суперкомпьютеров;
    • многоволоконные объёмные (матричные) ПД кабели, используемые для прямой (несканируемой) передачи плоских графических изображений объектов (например, для передачи видеоизображений – содержат тысячи или десятки тысяч волокон).

    По конструкции кабели делятся на ряд типов в зависимости от назначения, условий прокладки и других конструктивных элементов. К этим элементам относятся:

    • оптические волокна, имеющие первичное и вторичное защитные покрытия или специально подготовленные для укладки в кабель (например, соединённые вместе в плоскую ленту, а несколько плоских лент в матрицу – для увеличения общего числа волокон в кабеле до нескольких сот);
    • трубчатые модули, пластмассовые или металлические, в которых располагаются ОВ, называемые также оптическими модулями (ОМ);
    • профилированные сердечники, в продольных (по винтовой линии на периферии) пазах которых укладываются отдельные волокна, пучки волокон или размещаются трубчатые модули;
    • силовые элементы: центральные (в виде корда или металлической жилы) – ЦСЭ или внешние (в виде одного или нескольких повивов металлической проволоки). В качестве ЦСЭ может быть стеклопластиковый (СП) стержень, пучок специальных высокопрочных арамидных нитей (Кевлар, Тварон или Терлон), стальная поволока или стальной профилированный стержень;
    • специальные элементы, например, токопроводящие слои и повивы кабеля в грозотросе (ОКГТ) для уменьшения удельного сопротивления троса току короткого замыкания (КЗ);
    • технологические элементы типа гидрофобных заполнителей (гелей) или водоблокирующих лент, препятствующих проникновению (и распространению вдоль кабеля) влаги, увеличивающей затухание в ОВ кабеля, и различных технологических обмоток и оболочек, служащих для различных целей, в том числе и для тех же целей, что и гели;
    • технологические элементы типа корделей (модулей-заполнителей), используемых вместо оптических модулей в случае малого числа требуемых волокон для сохранения выбранной геометрии конструкции кабеля (их диаметры, как правило, одинаковы с диаметром трубок для удобства формирования повива);
    • специальные интегрированные элементы типа служебных жил медного провода, используемых вместе с модулями и корделями в гибридных кабелях для заказчиков, использующих две среды передачи;
    • защитная броня либо в виде стальной (чаще гофрированной) ленты для защиты от механических повреждений и грызунов, либо в виде круглых (реже сегментированных) стальных нержавеющих или оцинкованных проволок накрученных в виде повивов (в один или несколько слоёв) для придания нужных защитных и механических свойств.

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > fiber optic cable

  • 13 fiber-optics cable

    1. волоконно-оптический кабель

     

    волоконно-оптический кабель
    Кабель, содержащий одно или несколько оптических волокон и предназначенный для передачи данных. 
    [ http://www.lexikon.ru/dict/net/index.html]

    волоконно-оптический кабель
    -
    [Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание - М.: РУССО, 1995 - 616 с.]

    оптический кабель
    Кабельное изделие, содержащее одно или несколько оптических волокон, объединенных в единую конструкцию, обеспечивающую их работоспособность в заданных условиях эксплуатации.
    Примечание. При необходимости оптический кабель может содержать также токопроводящие жилы.
    [ ГОСТ 26599-85]

    КЛАССИФИКАЦИЯ

    По назначению все кабели можно разделить на три категории:

    • внутренней прокладки (indoor);
    • наружной прокладки (outdoor);
    • специальные.

    Кабели внутренней или внутреобъектовой прокладки. используются внутри телефонных станций, офисов, зданий и помещений клиентов/абонентов. По условию прокладки эти кабели в свою очередь можно разделить на:

    • кабели вертикальной прокладки (riser cable);
    • кабели городской прокладки (distribution cable);
    • шнуры коммутации (patch cord).

    Кабели наружной прокладки могут применяться практически на любых линиях связи;

    • воздушные (aerial);
    • подземные (buried);
    • подводные (undersea, underwater).

    Кабели воздушной подвески подвешиваются на опорах различного типа и, в свою очередь, делятся на кабели:

    • самонесущие (self-supporting, например, типа ADSS – All-Dielectric Self-supporting;
    • полностью диэлектрические самонесущие;
    • с несущим тросом или без него, подвешиваемые на опорах различного типа, в том числе на опорах ЛЭП и контактной сети железных дорог;
    • прикрепляемые (lashed, например, типа ADL – полностью диэлектрические прикрепляемые), которые крепятся к несущему проводу с помощью диэлектрических шнуров или ленты, или же с помощью специальных зажимов, или спиралевидных отрезков металлической проволоки;
    • навиваемые (wrapped, например, типа SkyWrap компании Focas) – навиваются вокруг несущего, например, фазового провода или провода заземления (грозотроса);
    • встраиваемые в грозотрос (типа ORGW – Optical ground Wire – ОКГТ – оптический кабель в грозотросе).

    Кабели подземной прокладки в свою очередь делятся на:

    • кабели, прокладываемые в кабельной канализации и туннелях;
    • кабели, закапываемые в грунт;
    • кабели, автоматической прокладки (АП) в специальных трубах (например, трубах типа Silikor – ПЭ трубы компании Dura-Line).

    Подводные кабели имеют следующие разновидности:

    • кабели, укладываемые на дно несудоходных рек, неглубоких озёр и болот (используются при прохождении водных преград небольшой длины);
    • кабели, укладываемые на дно морей и океанов (что может означать не только укладку на дно, но и закрепление на определённой глубине, или закапывание в донный грунт на определённую глубину).

    К специальным кабелям относят следующие:

    • одноволоконные полностью диэлектрические (ПД) кабели в тонкой специальной оболочке для использования в сети внутренней коммутации различных спецустройств и приборов;
    • многоволоконные плоские (ПД) кабели, используемые для внутренних шин и компьютерных сетей суперкомпьютеров;
    • многоволоконные объёмные (матричные) ПД кабели, используемые для прямой (несканируемой) передачи плоских графических изображений объектов (например, для передачи видеоизображений – содержат тысячи или десятки тысяч волокон).

    По конструкции кабели делятся на ряд типов в зависимости от назначения, условий прокладки и других конструктивных элементов. К этим элементам относятся:

    • оптические волокна, имеющие первичное и вторичное защитные покрытия или специально подготовленные для укладки в кабель (например, соединённые вместе в плоскую ленту, а несколько плоских лент в матрицу – для увеличения общего числа волокон в кабеле до нескольких сот);
    • трубчатые модули, пластмассовые или металлические, в которых располагаются ОВ, называемые также оптическими модулями (ОМ);
    • профилированные сердечники, в продольных (по винтовой линии на периферии) пазах которых укладываются отдельные волокна, пучки волокон или размещаются трубчатые модули;
    • силовые элементы: центральные (в виде корда или металлической жилы) – ЦСЭ или внешние (в виде одного или нескольких повивов металлической проволоки). В качестве ЦСЭ может быть стеклопластиковый (СП) стержень, пучок специальных высокопрочных арамидных нитей (Кевлар, Тварон или Терлон), стальная поволока или стальной профилированный стержень;
    • специальные элементы, например, токопроводящие слои и повивы кабеля в грозотросе (ОКГТ) для уменьшения удельного сопротивления троса току короткого замыкания (КЗ);
    • технологические элементы типа гидрофобных заполнителей (гелей) или водоблокирующих лент, препятствующих проникновению (и распространению вдоль кабеля) влаги, увеличивающей затухание в ОВ кабеля, и различных технологических обмоток и оболочек, служащих для различных целей, в том числе и для тех же целей, что и гели;
    • технологические элементы типа корделей (модулей-заполнителей), используемых вместо оптических модулей в случае малого числа требуемых волокон для сохранения выбранной геометрии конструкции кабеля (их диаметры, как правило, одинаковы с диаметром трубок для удобства формирования повива);
    • специальные интегрированные элементы типа служебных жил медного провода, используемых вместе с модулями и корделями в гибридных кабелях для заказчиков, использующих две среды передачи;
    • защитная броня либо в виде стальной (чаще гофрированной) ленты для защиты от механических повреждений и грызунов, либо в виде круглых (реже сегментированных) стальных нержавеющих или оцинкованных проволок накрученных в виде повивов (в один или несколько слоёв) для придания нужных защитных и механических свойств.

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > fiber-optics cable

  • 14 optical-fiber cable

    1. оптический фиброкабель
    2. волоконно-оптический кабель

     

    волоконно-оптический кабель
    Кабель, содержащий одно или несколько оптических волокон и предназначенный для передачи данных. 
    [ http://www.lexikon.ru/dict/net/index.html]

    волоконно-оптический кабель
    -
    [Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание - М.: РУССО, 1995 - 616 с.]

    оптический кабель
    Кабельное изделие, содержащее одно или несколько оптических волокон, объединенных в единую конструкцию, обеспечивающую их работоспособность в заданных условиях эксплуатации.
    Примечание. При необходимости оптический кабель может содержать также токопроводящие жилы.
    [ ГОСТ 26599-85]

    КЛАССИФИКАЦИЯ

    По назначению все кабели можно разделить на три категории:

    • внутренней прокладки (indoor);
    • наружной прокладки (outdoor);
    • специальные.

    Кабели внутренней или внутреобъектовой прокладки. используются внутри телефонных станций, офисов, зданий и помещений клиентов/абонентов. По условию прокладки эти кабели в свою очередь можно разделить на:

    • кабели вертикальной прокладки (riser cable);
    • кабели городской прокладки (distribution cable);
    • шнуры коммутации (patch cord).

    Кабели наружной прокладки могут применяться практически на любых линиях связи;

    • воздушные (aerial);
    • подземные (buried);
    • подводные (undersea, underwater).

    Кабели воздушной подвески подвешиваются на опорах различного типа и, в свою очередь, делятся на кабели:

    • самонесущие (self-supporting, например, типа ADSS – All-Dielectric Self-supporting;
    • полностью диэлектрические самонесущие;
    • с несущим тросом или без него, подвешиваемые на опорах различного типа, в том числе на опорах ЛЭП и контактной сети железных дорог;
    • прикрепляемые (lashed, например, типа ADL – полностью диэлектрические прикрепляемые), которые крепятся к несущему проводу с помощью диэлектрических шнуров или ленты, или же с помощью специальных зажимов, или спиралевидных отрезков металлической проволоки;
    • навиваемые (wrapped, например, типа SkyWrap компании Focas) – навиваются вокруг несущего, например, фазового провода или провода заземления (грозотроса);
    • встраиваемые в грозотрос (типа ORGW – Optical ground Wire – ОКГТ – оптический кабель в грозотросе).

    Кабели подземной прокладки в свою очередь делятся на:

    • кабели, прокладываемые в кабельной канализации и туннелях;
    • кабели, закапываемые в грунт;
    • кабели, автоматической прокладки (АП) в специальных трубах (например, трубах типа Silikor – ПЭ трубы компании Dura-Line).

    Подводные кабели имеют следующие разновидности:

    • кабели, укладываемые на дно несудоходных рек, неглубоких озёр и болот (используются при прохождении водных преград небольшой длины);
    • кабели, укладываемые на дно морей и океанов (что может означать не только укладку на дно, но и закрепление на определённой глубине, или закапывание в донный грунт на определённую глубину).

    К специальным кабелям относят следующие:

    • одноволоконные полностью диэлектрические (ПД) кабели в тонкой специальной оболочке для использования в сети внутренней коммутации различных спецустройств и приборов;
    • многоволоконные плоские (ПД) кабели, используемые для внутренних шин и компьютерных сетей суперкомпьютеров;
    • многоволоконные объёмные (матричные) ПД кабели, используемые для прямой (несканируемой) передачи плоских графических изображений объектов (например, для передачи видеоизображений – содержат тысячи или десятки тысяч волокон).

    По конструкции кабели делятся на ряд типов в зависимости от назначения, условий прокладки и других конструктивных элементов. К этим элементам относятся:

    • оптические волокна, имеющие первичное и вторичное защитные покрытия или специально подготовленные для укладки в кабель (например, соединённые вместе в плоскую ленту, а несколько плоских лент в матрицу – для увеличения общего числа волокон в кабеле до нескольких сот);
    • трубчатые модули, пластмассовые или металлические, в которых располагаются ОВ, называемые также оптическими модулями (ОМ);
    • профилированные сердечники, в продольных (по винтовой линии на периферии) пазах которых укладываются отдельные волокна, пучки волокон или размещаются трубчатые модули;
    • силовые элементы: центральные (в виде корда или металлической жилы) – ЦСЭ или внешние (в виде одного или нескольких повивов металлической проволоки). В качестве ЦСЭ может быть стеклопластиковый (СП) стержень, пучок специальных высокопрочных арамидных нитей (Кевлар, Тварон или Терлон), стальная поволока или стальной профилированный стержень;
    • специальные элементы, например, токопроводящие слои и повивы кабеля в грозотросе (ОКГТ) для уменьшения удельного сопротивления троса току короткого замыкания (КЗ);
    • технологические элементы типа гидрофобных заполнителей (гелей) или водоблокирующих лент, препятствующих проникновению (и распространению вдоль кабеля) влаги, увеличивающей затухание в ОВ кабеля, и различных технологических обмоток и оболочек, служащих для различных целей, в том числе и для тех же целей, что и гели;
    • технологические элементы типа корделей (модулей-заполнителей), используемых вместо оптических модулей в случае малого числа требуемых волокон для сохранения выбранной геометрии конструкции кабеля (их диаметры, как правило, одинаковы с диаметром трубок для удобства формирования повива);
    • специальные интегрированные элементы типа служебных жил медного провода, используемых вместе с модулями и корделями в гибридных кабелях для заказчиков, использующих две среды передачи;
    • защитная броня либо в виде стальной (чаще гофрированной) ленты для защиты от механических повреждений и грызунов, либо в виде круглых (реже сегментированных) стальных нержавеющих или оцинкованных проволок накрученных в виде повивов (в один или несколько слоёв) для придания нужных защитных и механических свойств.

    Тематики

    EN

     

    оптический фиброкабель
    Вид кабелей из стекловолокна для коммуникационных линий
    [ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > optical-fiber cable

  • 15 duct

    1. труба
    2. проходить по каналу или трубе
    3. канал (в электропроводке)
    4. кабельный короб
    5. кабельный канал
    6. кабелепровод
    7. газоход

     

    кабелепровод
    Любой канал, обеспечивающий прокладку кабелей, в том числе, металлические и пластмассовые трубопроводы, рукава, каналы в полах, сотовые фальшполы, сетчатые лотки, желоба и кабель каналы (ISO/IEC 11801).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    кабелепровод
    трасса
    кабельный канал

    Трасса или структура, предназначенная или используемая для прокладки и монтажа телекоммуникационных кабелей.
    [ http://www.lanmaster.ru/SKS/DOKUMENT/568b.htm]

    Тематики

    EN

     

    кабельный канал
    Кабельным каналом называется закрытое и заглубленное (частично или полностью) в грунт, пол, перекрытие и т. п. непроходное сооружение, предназначенное для размещения в нем кабелей, укладку, осмотр и ремонт которых возможно производить лишь при снятом перекрытии.
    [ПУЭ. Раздел 2]

    кабельный канал

    Элемент системы электропроводки, расположенный над землей или полом или в земле или в полу, открытый, вентилируемый или замкнутый, размеры которого не позволяют вход людей, но обеспечивают доступ к трубам и (или) кабелям по всей длине в процессе монтажа и после него.
    Примечание - Кабельный канал может составлять или не составлять часть конструкции здания
    [ ГОСТ Р МЭК 60050-826-2009]

    канал кабельный
    Подземный непроходной канал, предназначенный для размещения электрических кабелей
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    EN

    cable channel
    element of a wiring system above or in the ground or floor, open, ventilated or closed, and having dimensions which do not permit the entry of persons but allow access to the conduits and/or cables throughout their length during and after installation
    NOTE – A cable channel may or may not form part of the building construction.
    [IEV number 826-15-06]

    FR

    caniveau, m
    élément de canalisation situé au-dessus ou dans le sol ou le plancher, ouvert, ventilé ou fermé, ayant des dimensions ne permettant pas aux personnes d'y circuler, mais dans lequel les conduits ou câbles sont accessibles sur toute leur longueur, pendant et après installation
    NOTE – Un caniveau peut ou non faire partie de la construction du bâtiment.
    [IEV number 826-15-06]

    3942
    Кабельные каналы:
    а — лотковый типа ЛК; б — из сборных плит типа СК:

    1 — лоток; 2 — плита перекрытия; 3 — подготовка; 4 — плита стеновая; 5 — основание


    Высота кабельных каналов в свету не ограничивается, но бывает не более 1200 мм. Ширина каналов определяется в зависимости от размеров применяемых кабельных конструкций из условия сохранения прохода не менее 300 мм при глубине канала до 600 мм, 450 мм — от более 600 до 900 мм, 600 мм при более 900 мм.
    Полы в каналах выполняют с уклоном не менее 0,5% в сторону водосборников или ливневой канализации.
    Для крепления кабельных конструкций в стенах каналов через каждые 0,8—1 м (по длине) устанавливают закладные детали. При заводском изготовлении стеновых панелей детали устанавливают на предприятии-изготовителе. Закладные детали в каналах глубиной до 600 мм располагают в один ряд, при большей глубине каналов — в два ряда.
    В местах поворота и разветвления трассы устраивают уширительные камеры, размеры которых выбирают с учетом допускаемого радиуса изгиба прокладываемого кабеля.
    [ http://forca.ru/knigi/oborudovanie/priemka-zdaniy-i-sooruzheniy-pod-montazh-elektrooborudovaniya-11.html]

    Недопустимые, нерекомендуемые

    Примечание(1)- Мнение автора карточки

    Тематики

    Обобщающие термины

    EN

    DE

    FR

     

    короб
    Коробом называется закрытая полая конструкция прямоугольного или другого сечения, предназначенная для прокладки в ней проводов и кабелей.
    Короб должен служить защитой от механических повреждений проложенных в нем проводов и кабелей.
    Короба могут быть глухими или с открываемыми крышками, со сплошными или перфорированными стенками и крышками. Глухие короба должны иметь только сплошные стенки со всех сторон и не иметь крышек.
    Короба могут применяться в помещениях и наружных установках
    [ПУЭ. Раздел 2]

    короб электрический
    Подвесной или пристраиваемый короб для прокладки в нём электрических проводов и кабелей
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    EN

    wireway
    A trough which is lined with sheet metal and has hinged covers, designed to house electrical conductors or cables.
    [ http://www.answers.com/topic/wireway]

    См. также:
    система кабельных коробов
    система специальных кабельных коробов
    система кабельных коробов для монтажа на стенах и потолках

    3949

    1 - Подвесной кабельный короб

    [ http://www.tesli.com/file/image/news/0711/obo-ld-1.jpg]

     

    4411
    Рис. WIREMOLD
    Кабельный короб

     

    0510

     

    [ http://docs.hp.com/en/A3725-96021/ch02s05.html]

    Тематики

    EN

    DE

    FR

     

    канал
    Закрытый желоб,
    предназначенный специально для размещения и защиты электрических проводов, кабелей и электрических шин.
    Примечание
    Трубопроводы, кабельнесущие системы и короба под полом являются
    модификациями каналов.

    [ ГОСТ Р МЭК 60204-1-2007]

    канал
    канал для электропроводки
    Обобщающий термин для обозначния закрытых полых конструкций, предназначенных для прокладки в них и для механической защиты кабелей и проводов.
    Примечание

    К каналам для прокладки кабелей и проводов относятся: трубы для электропроводки, системы кабельных коробов, в том числе и размещаемые в полу

    Примечание автора карточки
    Шинопроводы (busbars), указанные в IEC 60204-1-2006, не относятся к констукциям для прокладки в них кабелей и проводов.

    [Интент]

    EN

    duct
    enclosed channel designed expressly for holding and protecting electrical conductors, cables, and busbars
    NOTE
    Conduits (see 3.7), cable trunking systems (see 3.5) and underfloor channels are types of duct.
    [IEC 60204-1, ed. 5.0 (2005-10)]
    [IEC 60204-1-2006]

    FR

    canalisation
    canal fermé destiné expressément au support et à la protection de conducteurs, de câbles et de barres électriques
    NOTE Les conduits (voir 3.7), les systèmes de goulottes (voir 3.5) et les canaux enterrés sont des types de canalisations.
    [IEC 60204-1, ed. 5.0 (2005-10)]

    Термин "канал" применяют также при описании сооружений местных линейных телефонных сетей, см:
    - канал трубопровода кабельной канализации;
    - трубный канал

    2.1.4..... При скрытой электропроводке применяются следующие способы прокладки проводов и кабелей: в трубах, гибких металлических рукавах, коробах, замкнутых каналах и пустотах строительных конструкций, в заштукатуриваемых бороздах, под штукатуркой, а также замоноличиванием в строительные конструкции при их изготовлении.

    2.1.15. В стальных и других механических прочных трубах, рукавах, коробах, лотках и замкнутых каналах строительных конструкций зданий допускается совместная прокладка проводов и кабелей (за исключением взаиморезервируемых).

    2.1.19. При прокладке проводов и кабелей в трубах, глухих коробах, гибких металлических рукавах и замкнутых каналах должна быть обеспечена возможность замены проводов и кабелей.

    2.1.20. Конструктивные элементы зданий и сооружений, замкнутые каналы и пустоты которых используются для прокладки проводов и кабелей, должны быть несгораемыми.


    [ПУЭ]
     

    Параллельные тексты EN-RU

    External ducts

    Conductors and their connections external to the electrical equipment enclosure(s) shall be enclosed in suitable ducts (i.e. conduit or cable trunking systems) as described in 13.5 except for suitably protected cables that may be installed without ducts and with or without the use of open cable trays or cable support means
    .
    [IEC 60204-1-2006]

    Каналы для электропроводок, прокладываемые вне оболочек

    Проводники вне оболочек электротехнических устройств, должны прокладываться, а их соединения должны выполняться в соответствующих каналах для электропроводок (т. е. в трубах или в системах кабельных коробов) в соответствии с п. 13.5 за исключением надлежащим образом защищенных кабелей, которые можно прокладывать вне каналов с или без использования открытых (т. е. без крышек) кабельных лотков или опорных кабельных конструкций.

    [Перевод Интент]



     

    Тематики

    Синонимы

    EN

    FR

     

    проходить по каналу или трубе
    течь по каналу или трубе


    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > duct

  • 16 self contained cable

    1. кабель с каналом в токоведущей жиле

     

    кабель с каналом в токоведущей жиле

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    кабель с центральным маслопроводящим каналом
    кабель в собственной оболочке

    Кабель, в котором создающая давление жидкость находится в пределах металлической оболочки, наложенной в процессе изготовления
    [СТ МЭК 50(461)-84]
    [ Источник]


    Искусственное охлаждение маслонаполненных кабелей с центральным маслопроводящим каналом

    Для преодоления жестких ограничений по токовой нагрузочной способности кабелей, проложенных в земле, может применяться искусственное охлаждение кабелей.
    Возможны следующие варианты искусственного охлаждения:

    • внешнее охлаждение с помощью труб. При этом обеспечивается протекание воды по пластмассовым трубам, проложенным вблизи от кабеля. Общее термическое сопротивление кабеля в схеме замещения шунтируется термическим сопротивлением между кабелем и охлаждающей водой. Температура воды увеличивается при движении по трубам, и, таким образом, имеется ограничение по длине кабеля, который может быть охлажден таким способом. Эффективное термическое  coпpотивление содержит составляющие: сопротивление грунта между кабелем и трубами, сопротивление стенки трубы, термическое сопротивление между кабелем и охлаждающей водой и термическое сопротивление самого кабеля. Такая система искусственного охлаждения относительно проста и имеет ряд преимуществ по механическим характеристикам для кабелей, проложенных непосредственно в земле. Охлаждение длинных КЛ производится путем применения труб охлаждения большого диаметра, например диаметром 150 мм. Такие трубы должны быть гибкими и должны иметь армированные стенки с тем, чтобы выдерживать давление почвы в том случае, когда они не заполнены водой под давлением;

     5131

    Внешнее охлаждение кабелей с помощью трубс водой (обозначены прямой и обратный потоки воды)

    Т - трубы с водой;
    К - кабель;
    1 - обратный трубопровод;
    2 - прямой трубопровод

    • поверхностное охлаждение.
      Система более интенсивного водяного охлаждения, чем при использовании труб внешнего охлаждения, выполнена следующим образом. Кабель размещается в жесткой пластмассовой трубе диаметром около 250 мм, применяется принудительная циркуляция воды через трубу. Такой способ искусственного охлаждения дороже, чем предыдущий, но при этом для кабеля с жилой 2000 мм2 можно достичь токовой нагрузки свыше 3200 А.

    Способ поверхностного искусственного охлаждения также известен как способ непосредственного охлаждения оболочки (в отличие от внешнего охлаждения с помощью труб). При непосредственном охлаждении кабелей возникают проблемы, связанные с возможным перемещением кабелей в трубопроводе из-за электромеханических усилий. Из-за значительной стоимости схем поверхностного охлаждения схема внешнего охлаждения является более предпочтительной, и установки поверхностного непосредственного охлаждения пpименяются лишь в тех случаях, когда требуемая нагрузочная способность кабелей не может быть достигнута другим способом. Дополнительные проблемы в схемах поверхностного искусственного охлаждения связаны с высокой температурой в среднем сечении соединительных муфт, которые имеют повышенные термические сопротивления изоляции. Для схем естественного охлаждения кабелей обычно такой проблемы не возникает, так как имеется возможность увеличить расстояние между опорами муфт. При температуре жилы кабеля 85° С, несмотря на принятые меры, температура в соединительных муфтах может быть значительно выше;

    5132 

     Поверхностное или непосредственное искусственное охлаждение кабелей, проложенных в трубах

    • внутреннее охлаждение.
      При этом циркуляция охлаждающей жидкости обеспечивается в каждой жиле кабеля. Охлаждающей жидкостью может быть: изоляционное масло, которое является частью масла в бумажно-масляной изоляции кабеля, вода, которая имеет большую способность поглощать теплоту, чем масло. Однако вода должна быть включена в водонепроницаемые трубки внутри канала в жиле кабеля, как показано на рисунке

     5133

    Поперечное сечение кабеля на напряжение 110 кВ с внутренним водяным охла ждением:

    1 - канал для воды диаметром d;
    2 - водонепроницаемая трубка;
    3 - токопроводящая жила диаметром dж, скрученная из отдельных проволок;
    4 - полупроводящая бумага;
    5 - изоляция;
    6 - экранирующие ленты;
    7 - гофрированная алюминиевая оболочка;
    8 - антикоррозийная защита;
    9 - оболочка из поливинилхлорида

     Такую схему можно применить для кабелей со сплошной экструдированной изоляцией, которые применяются для соединения генераторов при относительно низком напряжении. Напряжение на охлаждающей жидкости должно снижаться до потенциала земли прежде, чем она попадет в перекачивающий насос. В схемах с водяным охлаждением применяют специальные концевые устройства для кабелей, внутри которых охлаждающая жидкость протекает через спиральный канал, обеспечивающий необходимую электрическую изоляцию при рабочем напряжении КЛ. Электрическое сопротивление воды снижается в процессе эксплуатации; опыт показывает, что удельное электрическое сопротивление rв = 200 кОм см является приемлемым. Поэтому для кабелей с внутренним искусственным охлаждением требуется применение регенерирующих установок,  которые  повышают  rв до 200 кОм см  при уменьшении сопротивления до 20 кОм см. Высокое значение rв является существенным для сохранения активных потерь в столбе воды на требуемом уровне. Основное преимущество системы внутреннего искусственного охлаждения заключается в том, что она позволяет удалять теплоту непосредственно от главного источника - жилы кабеля. С другой стороны, возможный объемный расход охлаждающей жидкости ограничивается размером канала в жиле кабеля, а повышение  температуры жидкости на определенной длине кабеля будет значительным.

    Можно использовать фторорганические жидкости для охлаждения по каналу жилы кабеля, например фреон - 12. Жидкий хладагент абсорбирует теплоту, испаряется и поступает в теплообменник. Этот способ находится еще в стадии разработки, и необходимость в таких схемах для кабелей пока еще определяется. Преимуществом такого испарительного охлаждения является установление естественного конвективного потока жидкости; при этом не требуются насосы.

    [ http://www.eti.su/articles/kabel-i-provod/kabel-i-provod_600.html]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > self contained cable

  • 17 self-contained cable

    1. кабель с каналом в токоведущей жиле

     

    кабель с каналом в токоведущей жиле

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    кабель с центральным маслопроводящим каналом
    кабель в собственной оболочке

    Кабель, в котором создающая давление жидкость находится в пределах металлической оболочки, наложенной в процессе изготовления
    [СТ МЭК 50(461)-84]
    [ Источник]


    Искусственное охлаждение маслонаполненных кабелей с центральным маслопроводящим каналом

    Для преодоления жестких ограничений по токовой нагрузочной способности кабелей, проложенных в земле, может применяться искусственное охлаждение кабелей.
    Возможны следующие варианты искусственного охлаждения:

    • внешнее охлаждение с помощью труб. При этом обеспечивается протекание воды по пластмассовым трубам, проложенным вблизи от кабеля. Общее термическое сопротивление кабеля в схеме замещения шунтируется термическим сопротивлением между кабелем и охлаждающей водой. Температура воды увеличивается при движении по трубам, и, таким образом, имеется ограничение по длине кабеля, который может быть охлажден таким способом. Эффективное термическое  coпpотивление содержит составляющие: сопротивление грунта между кабелем и трубами, сопротивление стенки трубы, термическое сопротивление между кабелем и охлаждающей водой и термическое сопротивление самого кабеля. Такая система искусственного охлаждения относительно проста и имеет ряд преимуществ по механическим характеристикам для кабелей, проложенных непосредственно в земле. Охлаждение длинных КЛ производится путем применения труб охлаждения большого диаметра, например диаметром 150 мм. Такие трубы должны быть гибкими и должны иметь армированные стенки с тем, чтобы выдерживать давление почвы в том случае, когда они не заполнены водой под давлением;

     5131

    Внешнее охлаждение кабелей с помощью трубс водой (обозначены прямой и обратный потоки воды)

    Т - трубы с водой;
    К - кабель;
    1 - обратный трубопровод;
    2 - прямой трубопровод

    • поверхностное охлаждение.
      Система более интенсивного водяного охлаждения, чем при использовании труб внешнего охлаждения, выполнена следующим образом. Кабель размещается в жесткой пластмассовой трубе диаметром около 250 мм, применяется принудительная циркуляция воды через трубу. Такой способ искусственного охлаждения дороже, чем предыдущий, но при этом для кабеля с жилой 2000 мм2 можно достичь токовой нагрузки свыше 3200 А.

    Способ поверхностного искусственного охлаждения также известен как способ непосредственного охлаждения оболочки (в отличие от внешнего охлаждения с помощью труб). При непосредственном охлаждении кабелей возникают проблемы, связанные с возможным перемещением кабелей в трубопроводе из-за электромеханических усилий. Из-за значительной стоимости схем поверхностного охлаждения схема внешнего охлаждения является более предпочтительной, и установки поверхностного непосредственного охлаждения пpименяются лишь в тех случаях, когда требуемая нагрузочная способность кабелей не может быть достигнута другим способом. Дополнительные проблемы в схемах поверхностного искусственного охлаждения связаны с высокой температурой в среднем сечении соединительных муфт, которые имеют повышенные термические сопротивления изоляции. Для схем естественного охлаждения кабелей обычно такой проблемы не возникает, так как имеется возможность увеличить расстояние между опорами муфт. При температуре жилы кабеля 85° С, несмотря на принятые меры, температура в соединительных муфтах может быть значительно выше;

    5132 

     Поверхностное или непосредственное искусственное охлаждение кабелей, проложенных в трубах

    • внутреннее охлаждение.
      При этом циркуляция охлаждающей жидкости обеспечивается в каждой жиле кабеля. Охлаждающей жидкостью может быть: изоляционное масло, которое является частью масла в бумажно-масляной изоляции кабеля, вода, которая имеет большую способность поглощать теплоту, чем масло. Однако вода должна быть включена в водонепроницаемые трубки внутри канала в жиле кабеля, как показано на рисунке

     5133

    Поперечное сечение кабеля на напряжение 110 кВ с внутренним водяным охла ждением:

    1 - канал для воды диаметром d;
    2 - водонепроницаемая трубка;
    3 - токопроводящая жила диаметром dж, скрученная из отдельных проволок;
    4 - полупроводящая бумага;
    5 - изоляция;
    6 - экранирующие ленты;
    7 - гофрированная алюминиевая оболочка;
    8 - антикоррозийная защита;
    9 - оболочка из поливинилхлорида

     Такую схему можно применить для кабелей со сплошной экструдированной изоляцией, которые применяются для соединения генераторов при относительно низком напряжении. Напряжение на охлаждающей жидкости должно снижаться до потенциала земли прежде, чем она попадет в перекачивающий насос. В схемах с водяным охлаждением применяют специальные концевые устройства для кабелей, внутри которых охлаждающая жидкость протекает через спиральный канал, обеспечивающий необходимую электрическую изоляцию при рабочем напряжении КЛ. Электрическое сопротивление воды снижается в процессе эксплуатации; опыт показывает, что удельное электрическое сопротивление rв = 200 кОм см является приемлемым. Поэтому для кабелей с внутренним искусственным охлаждением требуется применение регенерирующих установок,  которые  повышают  rв до 200 кОм см  при уменьшении сопротивления до 20 кОм см. Высокое значение rв является существенным для сохранения активных потерь в столбе воды на требуемом уровне. Основное преимущество системы внутреннего искусственного охлаждения заключается в том, что она позволяет удалять теплоту непосредственно от главного источника - жилы кабеля. С другой стороны, возможный объемный расход охлаждающей жидкости ограничивается размером канала в жиле кабеля, а повышение  температуры жидкости на определенной длине кабеля будет значительным.

    Можно использовать фторорганические жидкости для охлаждения по каналу жилы кабеля, например фреон - 12. Жидкий хладагент абсорбирует теплоту, испаряется и поступает в теплообменник. Этот способ находится еще в стадии разработки, и необходимость в таких схемах для кабелей пока еще определяется. Преимуществом такого испарительного охлаждения является установление естественного конвективного потока жидкости; при этом не требуются насосы.

    [ http://www.eti.su/articles/kabel-i-provod/kabel-i-provod_600.html]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > self-contained cable

  • 18 self-contained pressure cable

    1. кабель с каналом в токоведущей жиле

     

    кабель с каналом в токоведущей жиле

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    кабель с центральным маслопроводящим каналом
    кабель в собственной оболочке

    Кабель, в котором создающая давление жидкость находится в пределах металлической оболочки, наложенной в процессе изготовления
    [СТ МЭК 50(461)-84]
    [ Источник]


    Искусственное охлаждение маслонаполненных кабелей с центральным маслопроводящим каналом

    Для преодоления жестких ограничений по токовой нагрузочной способности кабелей, проложенных в земле, может применяться искусственное охлаждение кабелей.
    Возможны следующие варианты искусственного охлаждения:

    • внешнее охлаждение с помощью труб. При этом обеспечивается протекание воды по пластмассовым трубам, проложенным вблизи от кабеля. Общее термическое сопротивление кабеля в схеме замещения шунтируется термическим сопротивлением между кабелем и охлаждающей водой. Температура воды увеличивается при движении по трубам, и, таким образом, имеется ограничение по длине кабеля, который может быть охлажден таким способом. Эффективное термическое  coпpотивление содержит составляющие: сопротивление грунта между кабелем и трубами, сопротивление стенки трубы, термическое сопротивление между кабелем и охлаждающей водой и термическое сопротивление самого кабеля. Такая система искусственного охлаждения относительно проста и имеет ряд преимуществ по механическим характеристикам для кабелей, проложенных непосредственно в земле. Охлаждение длинных КЛ производится путем применения труб охлаждения большого диаметра, например диаметром 150 мм. Такие трубы должны быть гибкими и должны иметь армированные стенки с тем, чтобы выдерживать давление почвы в том случае, когда они не заполнены водой под давлением;

     5131

    Внешнее охлаждение кабелей с помощью трубс водой (обозначены прямой и обратный потоки воды)

    Т - трубы с водой;
    К - кабель;
    1 - обратный трубопровод;
    2 - прямой трубопровод

    • поверхностное охлаждение.
      Система более интенсивного водяного охлаждения, чем при использовании труб внешнего охлаждения, выполнена следующим образом. Кабель размещается в жесткой пластмассовой трубе диаметром около 250 мм, применяется принудительная циркуляция воды через трубу. Такой способ искусственного охлаждения дороже, чем предыдущий, но при этом для кабеля с жилой 2000 мм2 можно достичь токовой нагрузки свыше 3200 А.

    Способ поверхностного искусственного охлаждения также известен как способ непосредственного охлаждения оболочки (в отличие от внешнего охлаждения с помощью труб). При непосредственном охлаждении кабелей возникают проблемы, связанные с возможным перемещением кабелей в трубопроводе из-за электромеханических усилий. Из-за значительной стоимости схем поверхностного охлаждения схема внешнего охлаждения является более предпочтительной, и установки поверхностного непосредственного охлаждения пpименяются лишь в тех случаях, когда требуемая нагрузочная способность кабелей не может быть достигнута другим способом. Дополнительные проблемы в схемах поверхностного искусственного охлаждения связаны с высокой температурой в среднем сечении соединительных муфт, которые имеют повышенные термические сопротивления изоляции. Для схем естественного охлаждения кабелей обычно такой проблемы не возникает, так как имеется возможность увеличить расстояние между опорами муфт. При температуре жилы кабеля 85° С, несмотря на принятые меры, температура в соединительных муфтах может быть значительно выше;

    5132 

     Поверхностное или непосредственное искусственное охлаждение кабелей, проложенных в трубах

    • внутреннее охлаждение.
      При этом циркуляция охлаждающей жидкости обеспечивается в каждой жиле кабеля. Охлаждающей жидкостью может быть: изоляционное масло, которое является частью масла в бумажно-масляной изоляции кабеля, вода, которая имеет большую способность поглощать теплоту, чем масло. Однако вода должна быть включена в водонепроницаемые трубки внутри канала в жиле кабеля, как показано на рисунке

     5133

    Поперечное сечение кабеля на напряжение 110 кВ с внутренним водяным охла ждением:

    1 - канал для воды диаметром d;
    2 - водонепроницаемая трубка;
    3 - токопроводящая жила диаметром dж, скрученная из отдельных проволок;
    4 - полупроводящая бумага;
    5 - изоляция;
    6 - экранирующие ленты;
    7 - гофрированная алюминиевая оболочка;
    8 - антикоррозийная защита;
    9 - оболочка из поливинилхлорида

     Такую схему можно применить для кабелей со сплошной экструдированной изоляцией, которые применяются для соединения генераторов при относительно низком напряжении. Напряжение на охлаждающей жидкости должно снижаться до потенциала земли прежде, чем она попадет в перекачивающий насос. В схемах с водяным охлаждением применяют специальные концевые устройства для кабелей, внутри которых охлаждающая жидкость протекает через спиральный канал, обеспечивающий необходимую электрическую изоляцию при рабочем напряжении КЛ. Электрическое сопротивление воды снижается в процессе эксплуатации; опыт показывает, что удельное электрическое сопротивление rв = 200 кОм см является приемлемым. Поэтому для кабелей с внутренним искусственным охлаждением требуется применение регенерирующих установок,  которые  повышают  rв до 200 кОм см  при уменьшении сопротивления до 20 кОм см. Высокое значение rв является существенным для сохранения активных потерь в столбе воды на требуемом уровне. Основное преимущество системы внутреннего искусственного охлаждения заключается в том, что она позволяет удалять теплоту непосредственно от главного источника - жилы кабеля. С другой стороны, возможный объемный расход охлаждающей жидкости ограничивается размером канала в жиле кабеля, а повышение  температуры жидкости на определенной длине кабеля будет значительным.

    Можно использовать фторорганические жидкости для охлаждения по каналу жилы кабеля, например фреон - 12. Жидкий хладагент абсорбирует теплоту, испаряется и поступает в теплообменник. Этот способ находится еще в стадии разработки, и необходимость в таких схемах для кабелей пока еще определяется. Преимуществом такого испарительного охлаждения является установление естественного конвективного потока жидкости; при этом не требуются насосы.

    [ http://www.eti.su/articles/kabel-i-provod/kabel-i-provod_600.html]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > self-contained pressure cable

  • 19 coverage

    сущ.
    1)
    а) общ. сфера действия; рамки; границы; масштаб; охват
    б) стат. охват; зона переписи, область обследования
    в) рекл. охват (целевой группы) (выраженное в процентах отношение представителей целевой группы, охваченной рекламной кампанией, к общей численности целевой группы в генеральной совокупности)
    See:
    2) СМИ освещение события (в печати, по радио и т. п.)

    newspaper coverage (of smth.) — газетное освещение (чего-л.), освещение (чего-л.) в газетах/газете

    news coverage of (smth.) — освещение (чего-л.) в новостях

    3) страх. страховое покрытие, страховая защита (границы страховой защиты, определенные договором страхования; может применяться как для обозначения суммы обеспечиваемого возмещения, так и для обозначения рисков, от которых обеспечивается страхование)

    Medicare coverage — (страховое) покрытие по программе "Медикэр"

    insurance coverage commences, insurance coverage begins — страховое покрытие начинает действовать

    Basic coverage commences upon the first day of employment. — Базовое (страховое) покрытие начинает действовать с первого дня начала работы.

    Such welfare plans typically commence coverage immediately, on the first day of the next following month, or after a 30, 60, or 90 day waiting period. — Такие планы социального обеспечения обычно предусматривают немедленное начало действия страхового покрытия, начало действия страхового покрытия с первого дня ближайшего нового месяца или по истечении периода ожидания продолжительностью 30, 60 или 90 дней.

    The employee shall be entitled to commence coverage under the health insurance plan on the first day of the month following the month in which the board is satisfied that the employee is so eligible. — Работник должен быть наделен правом на начало использования страхового покрытия по плану страхования здоровья с первого дня месяца, следующего за месяцем, когда совет убедиться в том, что работник соответствует требованиям для получения права на такое страховое покрытие.

    Coverage ends upon the earliest of: your termination of employment; the date you begin to receive your pension; December 1 of the year in which you attain age 69; and the cancellation of coverage. — Действие страхового покрытия прекращается на наиболее раннюю из дат: дату прекращения работы; дату начала получения пенсии; 1 декабря того года, когда вам исполниться 69 лет; дату аннулирования страховки.

    to provide [to give\] coverage — предоставлять [обеспечивать\] страховое покрытие [страховую защиту\]

    Does this policy provide coverage for acts of war or terrorism? — Предоставляет ли этот полис страховое покрытие на случай военных действий или терроризма?

    Make sure the policy gives adequate coverage against burglary. — Убедитесь, что полис предоставляет адекватную страховую защиту от кражи со взломом.

    to issue coverage — предоставлять страховое покрытие [страховую защиту\]*

    Once they decide to issue coverage, they will send you a notification and a copy of the policy for your review. — Как только они решат предоставить страховое покрытие, они вышлют вам уведомление и копию полиса для рассмотрения.

    coverage issued as a supplement to liability insurance — страховое покрытие, предоставленное в качестве дополнения к полису страхования ответственности

    coverage against smth. — страховое покрытие [страховая защита\] от (чего-л.)

    to take out coverage — приобрести страховку [страховое покрытие\], застраховаться

    We strongly recommend that you take out travel insurance coverage, including coverage for trip cancellations. — Мы настоятельно рекомендуем вам приобрести наше туристическое страховое покрытие [нашу туристическую страховку\], включая страховое покрытие на случай отмены поездки.

    to carry coverage — иметь страховое покрытие, иметь страховку

    to purchase [to buy\] insurance coverage — приобрести страховое покрытие, купить [приобрести\] страховку

    to obtain [to get\] insurance coverage — приобрести страховое покрытие, приобрести страховку

    to cancel insurance coverage — аннулировать страховку [страховое покрытие\]

    to terminate insurance coverage — аннулировать страховку [страховое покрытие\], прекратить действие страховки [страхового покрытия\]

    to void insurance coverage — признавать страховое покрытие недействительным, аннулировать страховку [страховое покрытие\]

    to sell [to write, to underwrite\] insurance coverage — продавать страховку [страховое покрытие\]

    to apply for insurance coverage — подавать заявление на приобретение страховки [страхового покрытия\]

    insurance coverage expires [lapses\] on June 30 — срок действия страховки [страхового покрытия\] истекает 30 июля

    The coverage remains in force for the life of the insured and premiums are paid for a period of time selected by the policy owner. — Страховое покрытие остается в силе в течение всей жизни застрахованного, а (страховые) премии уплачиваются на протяжении периода, выбранного владельцем полиса.

    If you choose to reject UM/UIM coverage, you are required by law to sign a special insurance form acknowledging your decision to do so. — Если вы решите отказаться от страховой защиты от незастрахованных/недостаточно застрахованных водителей, вам в соответствии с требованиями закона придется подписать специальный страховой бланк, уведомляющий о вашем решении отказаться от страхового покрытия.

    Employees may enroll in dental coverage during their initial 30 days of eligibility or during the annual Summer Enrollment period. — Работники могут присоединиться к программе зубного страхования в течение первых 30 дней с момента получения такого права или в течение периода ежегодного летнего приема на страхование.

    to deny insurance coverage — 1) отказываться от страхового покрытия, 2) отказывать в предоставлении страхового покрытия

    insurance coverage amount, amount of insurance coverage — сумма страхового покрытия

    insurance coverage in the amount of— страховое покрытие в сумме

    Syn:
    See:
    4) фин. покрытие, обеспечение; степень покрытия (напр., расходов доходами)
    See:

    * * *
    coverage workers' compensation компенсация работников: страховое покрытие потерянной зарплаты и медицинских расходов в случае болезни или несчастных случаев на работе при исполнении служебных обязанностей.
    * * *
    охват; покрытие рисков; покрытие капитала; зона действия сети (в подвижной телефонии); зона действия; покрытие
    . . Словарь экономических терминов .
    * * *

    Англо-русский экономический словарь > coverage

  • 20 principle of indemnity

    страх. принцип возмещения (убытков)* (принцип страхования, заключающийся в том, что застрахованная сторона должна получить возмещение убытков, понесенных в результате наступления страхового случая, но не дополнительную выгоду; не может применяться к страхованию жизни и некоторым другим видам личного страхования, так невозможно оценить ценность человеческой жизни)
    See:

    Англо-русский экономический словарь > principle of indemnity

См. также в других словарях:

  • Проводка управления самолётом — система механических элементов (труб, качалок и т. п.), передающих усилия и перемещения от рычагов управления к рулям управления. По виду возникающих в П. у. напряжений различаются: жёсткая проводка, работающая на растяжение и сжатие (пуш пульные …   Энциклопедия техники

  • ДИРЕКТИВА ЕЭС № 7 — документ, регулирующий вопросы групповой (консолидированной) бухгалтерской отчетности стран членов ЕЭС. В зависимости от того, кто владеет акциями компании, получившей инвестиции и кто контролирует руководство компании, готовится… …   Большой бухгалтерский словарь

  • директива ЕЭС № 7 — Документ, регулирующий вопросы групповой (консолидированной) бухгалтерской отчетности стран членов ЕЭС. В зависимости от того, кто владеет акциями компании, получившей инвестиции и кто контролирует руководство компании, готовится… …   Справочник технического переводчика

  • Планета-сирота — Необходимо проверить качество перевода и привести статью в соответствие со стилистическими правилами Википедии. Вы можете помочь улучшить эту статью, исправив в ней ошибки …   Википедия

  • Агротехника —         технология земледелия, система приёмов возделывания с. х. культур. Задача А. обеспечить высокий урожай с. х. культур при минимальных затратах труда и средств на единицу получаемой продукции; решается она внедрением в с. х. производство… …   Большая советская энциклопедия

  • ШЕФТСБЕРИ — (Schaftsbury) Антони Эшли Купер (1671 1713) англ. философ. Занимался гл. обр. проблемами этики и эстетики. Эстетизировал мир, рисовал величественную картину вечно творимого и творящегося космоса, пронизанного гармоническим единством. Образ… …   Философская энциклопедия

  • Извне (повесть) — У этого термина существуют и другие значения, см. Извне (значения). Извне Жанр: повесть Автор: братья Стругацкие Язык оригинала: русский Год написания …   Википедия

  • Партер (борьба) — У этого термина существуют и другие значения, см. Партер. Партер (фр. parterre  на земле)  термин, использующийся в разных видах борьбы, который означает борьбу, когда один из борцов находится в положении лёжа (на боку, на спине,… …   Википедия

  • Догон (стратегия ставок) — У этого термина существуют и другие значения, см. Догон. Догон стратегия ставок, при которой размер каждой следующей ставки зависит от результата, достигнутого предыдущими ставками. Основная цель  возврат проигранных средств и получение… …   Википедия

  • Авандия — Действующее вещество ›› Росиглитазон* (Rosiglitazone*) Латинское название Avandia АТХ: ›› A10BG Тиазолиндионы Фармакологическая группа: Гипогликемические синтетические и другие средства Нозологическая классификация (МКБ 10) ›› E11… …   Словарь медицинских препаратов

  • Продукционное правило — Продуктообмен обмен одного вида продуктов, изделий на другой вид как одна из форм экономической связи в обществе. Синонимы: ДЕЙСТВИЕ и т.п., @ Продукционное правило может применяться только в том случае, когда текущее, состояние рабочей памяти… …   Финансовый словарь

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»